Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2010, Volume 74, Issue 1, Pages 1–126
DOI: https://doi.org/10.1070/IM2010v074n01ABEH002481
(Mi im1122)
 

This article is cited in 27 scientific papers (total in 27 papers)

The local finite basis property and local representability of varieties of associative rings

A. Ya. Belovab

a Moscow Institute of Open Education
b Bar-Ilan University, Ramat Gan, Israel
References:
Abstract: We prove the local representability and local finite basis property of varieties of associative rings and algebras over an arbitrary associative-commutative Noetherian ring Φ.
Keywords: PI-algebra, representable algebra, universal algebra, polynomial identity, Hilbert series, Specht problem, non-commutative algebraic geometry, representation theory, quiver.
Received: 26.06.2006
Bibliographic databases:
UDC: 512.552.4+512.554.32+512.664.2
Language: English
Original paper language: Russian
Citation: A. Ya. Belov, “The local finite basis property and local representability of varieties of associative rings”, Izv. Math., 74:1 (2010), 1–126
Citation in format AMSBIB
\Bibitem{Bel10}
\by A.~Ya.~Belov
\paper The local finite basis property and local representability of varieties of associative rings
\jour Izv. Math.
\yr 2010
\vol 74
\issue 1
\pages 1--126
\mathnet{http://mi.mathnet.ru/eng/im1122}
\crossref{https://doi.org/10.1070/IM2010v074n01ABEH002481}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2655238}
\zmath{https://zbmath.org/?q=an:1208.16022}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010IzMat..74....1B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000276747800001}
\elib{https://elibrary.ru/item.asp?id=20358710}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77950352509}
Linking options:
  • https://www.mathnet.ru/eng/im1122
  • https://doi.org/10.1070/IM2010v074n01ABEH002481
  • https://www.mathnet.ru/eng/im/v74/i1/p3
  • This publication is cited in the following 27 articles:
    1. Eli Aljadeff, Yakov Karasik, “Semisimple algebras and PI-invariants of finite dimensional algebras”, Alg. Number Th., 18:1 (2024), 133  crossref
    2. A. V. Kislitsin, “On Simple Finite-Dimensional Algebras with Infinite Basis of Identities”, Math. Notes, 114:5 (2023), 845–849  mathnet  crossref  crossref  mathscinet
    3. Alexei Belov-Kanel, Farrokh Razavinia, Wenchao Zhang, “Centralizers in Free Associative Algebras and Generic Matrices”, Mediterr. J. Math., 20:2 (2023)  crossref
    4. Kobiljon Abdurasulov, Ivan Kaygorodov, Abror Khudoyberdiyev, “The Algebraic Classification of Nilpotent Bicommutative Algebras”, Mathematics, 11:3 (2023), 777  crossref
    5. Edmond W. H. Lee, Frontiers in Mathematics, Advances in the Theory of Varieties of Semigroups, 2023, 1  crossref
    6. A. M. Elishev, A. Ya. Belov, F. Razavinia, Yu Jie-Tai, Wenchao Zhang, “Polynomial automorphisms, quantization, and Jacobian conjecture related problems. I. Introduction”, Geometriya, mekhanika i differentsialnye uravneniya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 213, VINITI RAN, M., 2022, 110–144  mathnet  crossref
    7. A. M. Elishev, A. Ya. Belov, F. Razavinia, Yu Jie-Tai, Wenchao Zhang, “Polynomial automorphisms, quantization, and Jacobian conjecture related problems. II. Quantization proof of Bergman's centralizer theorem”, Algebra, geometriya i kombinatorika, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 214, VINITI RAN, M., 2022, 107–126  mathnet  crossref
    8. A. M. Elishev, A. Ya. Belov, F. Razavinia, Yu Dzhi-Tai, Venchao Zheng, “Polinomialnye avtomorfizmy, kvantovanie i zadachi vokrug gipotezy Yakobiana. III. Avtomorfizmy, topologiya popolneniya i approksimatsiya”, Algebra, geometriya i kombinatorika, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 215, VINITI RAN, M., 2022, 95–128  mathnet  crossref
    9. A. M. Elishev, A. Ya. Belov, F. Razavinia, Yu Dzhi-Tai, Venchao Zheng, “Polinomialnye avtomorfizmy, kvantovanie i zadachi vokrug gipotezy Yakobiana. IV. Approksimatsii polinomialnymi simplektomorfizmami”, Algebra, geometriya, differentsialnye uravneniya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 216, VINITI RAN, M., 2022, 153–171  mathnet  crossref
    10. A. M. Elishev, A. Ya. Belov, F. Razavinia, Yu Dzhi-Tai, Venchao Zheng, “Polinomialnye avtomorfizmy, kvantovanie i zadachi vokrug gipotezy Yakobiana. V. Gipoteza Yakobiana i problemy tipa Shpekhta i Bernsaida”, Algebra, geometriya, differentsialnye uravneniya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 217, VINITI RAN, M., 2022, 107–137  mathnet  crossref
    11. Jason P. Bell, Peter V. Danchev, “Affine representability and decision procedures for commutativity theorems for rings and algebras”, Isr. J. Math., 249:1 (2022), 121  crossref
    12. S. Yu. Antonov, A. V. Antonova, “O kvazimnogochlenakh Kapelli. III”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 21:2 (2021), 142–150  mathnet  crossref  elib
    13. I. A. Reshetnikov, “Kombinatorika slov, faktordinamika i normalnye formy”, Chebyshevskii sb., 22:2 (2021), 202–235  mathnet  crossref
    14. Vesselin Drensky, “Weak polynomial identities and their applications”, Communications in Mathematics, 29:2 (2021), 291  crossref
    15. Kanel-Belov A., Yu J.-T., Elishev A., “On the Augmentation Topology of Automorphism Groups of Affine Spaces and Algebras”, Int. J. Algebr. Comput., 28:8, SI (2018), 1449–1485  crossref  mathscinet  zmath  isi
    16. A. V. Kislitsin, “Simple finite-dimensional algebras without finite basis of identities”, Siberian Math. J., 58:3 (2017), 461–466  mathnet  crossref  crossref  isi  elib  elib
    17. G. Deryabina, A. Krasilnikov, “The subalgebra of graded central polynomials of an associative algebra”, J. Algebra, 425 (2015), 313–323  crossref  mathscinet  zmath  isi  scopus
    18. A. V. Kislitsin, “An example of a central simple commutative finite-dimensional algebra with an infinite basis of identities”, Algebra and Logic, 54:3 (2015), 204–210  mathnet  crossref  crossref  mathscinet  isi
    19. A. Belov-Kanel, L. Rowen, U. Vishne, “Specht's problem for associative affine algebras over commutative Noetherian rings”, Trans. Amer. Math. Soc., 367:8 (2015), 5553–5596  crossref  mathscinet  zmath  isi  scopus
    20. G. S. Deryabina, A. N. Krasilnikov, “A Non-Finitely-Based Variety of Centrally Metabelian Pointed Groups”, Math. Notes, 95:5 (2014), 743–746  mathnet  crossref  crossref  mathscinet  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:1439
    Russian version PDF:573
    English version PDF:48
    References:126
    First page:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025