Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2011, Volume 14, Number 1, Pages 195–211 (Mi mt212)  

This article is cited in 9 scientific papers (total in 9 papers)

On infinity of the discrete spectrum of operators in the Friedrichs model

Yu. Kh. Eshkabilov

National University of Uzbekistan, Tashkent, Uzbekistan
Full-text PDF (236 kB) Citations (9)
References:
Abstract: The discrete spectrumof selfadjoint operators in the Friedrichs model is studied. Necessary and sufficient conditions of existence of infinitely many eigenvalues in the Friedrichs model are presented. A discrete spectrum of a model three-particle discrete Schrödinger operator is described.
Key words: Friedrichs model, spectrum, essential spectrum, discrete spectrum.
Received: 30.10.2009
English version:
Siberian Advances in Mathematics, 2012, Volume 22, Issue 1, Pages 1–12
DOI: https://doi.org/10.3103/S1055134412010014
Bibliographic databases:
Document Type: Article
UDC: 517.968
Language: Russian
Citation: Yu. Kh. Eshkabilov, “On infinity of the discrete spectrum of operators in the Friedrichs model”, Mat. Tr., 14:1 (2011), 195–211; Siberian Adv. Math., 22:1 (2012), 1–12
Citation in format AMSBIB
\Bibitem{Esh11}
\by Yu.~Kh.~Eshkabilov
\paper On infinity of the discrete spectrum of operators in the Friedrichs model
\jour Mat. Tr.
\yr 2011
\vol 14
\issue 1
\pages 195--211
\mathnet{http://mi.mathnet.ru/mt212}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2858663}
\elib{https://elibrary.ru/item.asp?id=16441661}
\transl
\jour Siberian Adv. Math.
\yr 2012
\vol 22
\issue 1
\pages 1--12
\crossref{https://doi.org/10.3103/S1055134412010014}
Linking options:
  • https://www.mathnet.ru/eng/mt212
  • https://www.mathnet.ru/eng/mt/v14/i1/p195
  • This publication is cited in the following 9 articles:
    1. D. Zh. Kulturaev, Yu. Kh. Eshkabilov, “On the Spectral Properties of Selfadjoint Partial Integral Operators with a Nondegenerate Kernel”, Sib Math J, 65:2 (2024), 475  crossref
    2. D. Zh. Kulturaev, Yu. Kh. Eshkabilov, “O spektralnykh svoistvakh samosopryazhennykh chastichno integralnykh operatorov s nevyrozhdennymi yadrami”, Vladikavk. matem. zhurn., 24:4 (2022), 91–104  mathnet  crossref  mathscinet
    3. Yu. Kh. Eshkabilov, D. J. Kulturaev, “On discrete spectrum of one two-particle lattice Hamiltonian”, Ufa Math. J., 14:2 (2022), 97–107  mathnet  crossref
    4. G. P. Arzikulov, Yu. Kh. Eshkabilov, “About the spectral properties of one three-partial model operator”, Russian Math. (Iz. VUZ), 64:5 (2020), 1–7  mathnet  crossref  crossref  isi
    5. R. R. Kucharov, Yu. Kh. Eshkabilov, “On the number of negative eigenvalues of a partial integral operator”, Siberian Adv. Math., 25:3 (2015), 179–190  mathnet  crossref  mathscinet
    6. G. P. Arzikulov, Yu. Kh. Eshkabilov, “On the essential and the discrete spectra of a Fredholm type partial integral operator”, Siberian Adv. Math., 25:4 (2015), 231–242  mathnet  crossref  mathscinet
    7. Yu. Kh. Eshkabilov, “On the discrete spectrum of partial integral operators”, Siberian Adv. Math., 23:4 (2013), 227–233  mathnet  crossref  mathscinet  elib
    8. Eshkabilov Yu.Kh., “O beskonechnosti chisla otritsatelnykh sobstvennykh znachenii modeli Fridriskha”, Nanosistemy: fizika, khimiya, matematika, 3:6 (2012), 16–24  mathscinet  zmath  elib
    9. Boitsev A.A., Popov I.Yu., Sokolov O.V., “Gamiltonian s tochechnymi potentsialami i beskonechnym chislom sobstvennykh znachenii”, Nanosistemy: fizika, khimiya, matematika, 3:4 (2012), 9–19  zmath  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:602
    Full-text PDF :150
    References:92
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025