Abstract:
We investigate the structure of the essential spectrum of a self-adjoint Fredholm type partial integral operator HH. We obtain an explicit description of the essential spectrum of HH and prove that an eigenvalue of HH exists.
Key words:
essential spectrum, discrete spectrum, lower boundary of the essential spectrum, Fredholm type partial integral operator.
Citation:
G. P. Arzikulov, Yu. Kh. Eshkabilov, “On the essential and the discrete spectra of a Fredholm type partial integral operator”, Mat. Tr., 17:2 (2014), 23–40; Siberian Adv. Math., 25:4 (2015), 231–242
\Bibitem{ArzEsh14}
\by G.~P.~Arzikulov, Yu.~Kh.~Eshkabilov
\paper On the essential and the discrete spectra of a~Fredholm type partial integral operator
\jour Mat. Tr.
\yr 2014
\vol 17
\issue 2
\pages 23--40
\mathnet{http://mi.mathnet.ru/mt275}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3330049}
\transl
\jour Siberian Adv. Math.
\yr 2015
\vol 25
\issue 4
\pages 231--242
\crossref{https://doi.org/10.3103/S105513441504001X}
Linking options:
https://www.mathnet.ru/eng/mt275
https://www.mathnet.ru/eng/mt/v17/i2/p23
This publication is cited in the following 3 articles:
D. Zh. Kulturaev, Yu. Kh. Eshkabilov, “On the Spectral Properties of Selfadjoint Partial Integral Operators with a Nondegenerate Kernel”, Sib Math J, 65:2 (2024), 475