Abstract:
This article is concerned with the method of higher energies from combinatorial number theory. Upper bounds are obtained for the additive energies of convex sets and of sets A with small |AA| and |A(A+1)|. New structural results, involving the notion of a dual popular difference set, are proved in terms of higher energies.
Key words and phrases:
combinatorial number theory; higher energies; popular difference set.
Citation:
I. D. Shkredov, “Some new results on higher energies”, Tr. Mosk. Mat. Obs., 74, no. 1, MCCME, M., 2013, 35–73; Trans. Moscow Math. Soc., 74 (2013), 31–63
Thomas F. Bloom, Olof Sisask, “The Kelley–Meka bounds for sets free of
three-term arithmetic progressions”, Ess. Number Th., 2:1 (2023), 15
O. Roche-Newton, A. Warren, “A convex set with a rich difference”, Acta Math. Hungar., 168:2 (2022), 587
Akshat Mudgal, “Additive energies on spheres”, Journal of London Math Soc, 106:4 (2022), 2927
MISHA RUDNEV, SOPHIE STEVENS, “An update on the sum-product problem”, Math. Proc. Camb. Phil. Soc., 173:2 (2022), 411
K. I. Olmezov, “An Elementary Analog of the Operator Method in Additive Combinatorics”, Math. Notes, 109:1 (2021), 110–119
Roche-Newton O., Warren A., “New Expander Bounds From Affine Group Energy”, Discret. Comput. Geom., 66:2 (2021), 552–574
I. D. Shkredov, “Non-commutative methods in additive combinatorics and number theory”, Russian Math. Surveys, 76:6 (2021), 1065–1122
Hanson B., Petridis G., “A Question of Bukh on Sums of Dilates”, Discrete Anal., 2021, 13
Aistleitner Ch., El-Baz D., Munsch M., “A Pair Correlation Problem, and Counting Lattice Points With the Zeta Function”, Geom. Funct. Anal., 31:3 (2021), 483–512
Xue B., “Asymmetric Estimates and the Sum-Product Problems”, Acta Arith., 198:3 (2021), 289–311
K. I. Olmezov, “Sharpening an Estimate of the Size
of the Sumset of a Convex Set”, Math. Notes, 107:6 (2020), 984–987
K. I. Olmezov, A. S. Semchankau, I. D. Shkredov, “On Popular Sums and Differences for Sets with Small Multiplicative Doubling”, Math. Notes, 108:4 (2020), 557–565
K. I. Olmezov, “Additive Properties of Slowly Increasing Convex Sets”, Math. Notes, 108:6 (2020), 827–841
Rudnev M., Shakan G., Shkredov I.D., “Stronger Sum-Product Inequalities For Small Sets”, Proc. Amer. Math. Soc., 148:4 (2020), 1467–1479
Murphy B., Petridis G., Roche-Newton O., Rudnev M., Shkredov I.D., “New Results on Sum-Product Type Growth Over Fields”, Mathematika, 65:3 (2019), 588–642
I. D. Shkredov, “On asymptotic formulae in some sum-product questions”, Trans. Moscow Math. Soc., 2018, 231–281
I. D. Shkredov, “Differences of subgroups in subgroups”, Int. J. Number Theory, 14:4 (2018), 1111–1134
I. D. Shkredov, D. Zhelezov, “On additive bases of sets with small product set”, Int. Math. Res. Notices, 2018, no. 5, 1585–1599
I. V. Vyugin, E. V. Solodkova, I. D. Shkredov, “On the Additive Energy of the Heilbronn Subgroup”, Math. Notes, 101:1 (2017), 58–70