Abstract:
In this paper we obtain a series of asymptotic formulae in the sum-product phenomena over the prime field $ \mathbb{F}_p$. In the proofs we use the usual incidence theorems in $ \mathbb{F}_p$, as well as the growth result in $ \mathrm {SL}_2 (\mathbb{F}_p)$ due to Helfgott. Here are some of our applications:
a new bound for the number of the solutions to the equation $ (a_1-a_2) (a_3-a_4) = (a'_1-a'_2) (a'_3-a'_4)$, $ \,a_i, a'_i\in A$, $ A$ is an arbitrary subset of $ \mathbb{F}_p$,
a new effective bound for multilinear exponential sums of Bourgain,
an asymptotic analogue of the Balog–Wooley decomposition theorem,
growth of $ p_1(b) + 1/(a+p_2 (b))$, where $ a,b$ runs over two subsets of $ \mathbb{F}_p$, $ p_1,p_2 \in \mathbb{F}_p [x]$ are two non-constant polynomials,
new bounds for some exponential sums with multiplicative and additive characters.
Key words and phrases:
sum-product phenomenon, asymptotic formulae, incidence geometry, exponantial sums.
Citation:
I. D. Shkredov, “On asymptotic formulae in some sum-product questions”, Tr. Mosk. Mat. Obs., 79, no. 2, MCCME, M., 2018, 271–334; Trans. Moscow Math. Soc., 2018, 231–281
\Bibitem{Shk18}
\by I.~D.~Shkredov
\paper On asymptotic formulae in some sum-product questions
\serial Tr. Mosk. Mat. Obs.
\yr 2018
\vol 79
\issue 2
\pages 271--334
\publ MCCME
\publaddr M.
\mathnet{http://mi.mathnet.ru/mmo616}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3881467}
\elib{https://elibrary.ru/item.asp?id=37045101}
\transl
\jour Trans. Moscow Math. Soc.
\yr 2018
\pages 231--281
\crossref{https://doi.org/10.1090/mosc/283}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85060997066}
Linking options:
https://www.mathnet.ru/eng/mmo616
https://www.mathnet.ru/eng/mmo/v79/i2/p271
This publication is cited in the following 23 articles:
Subham Bhakta, Srilakshmi Krishnamoorthy, R. Muneeswaran, “Congruence classes for modular forms over small sets”, Int. J. Number Theory, 20:06 (2024), 1621
I. D. Shkredov, “On the multiplicative Chung-Diaconis-Graham process”, Sb. Math., 214:6 (2023), 878–895
Ilya D. Shkredov, “On multiplicative energy of subsets of varieties”, Can. J. Math., 75:1 (2023), 322–340
Daniele Dona, “A sum-bracket theorem for simple Lie algebras”, Journal of Algebra, 631 (2023), 658
Rudnev M., Wheeler J., “On Incidence Bounds With Mobius Hyperbolae in Positive Characteristic”, Finite Fields their Appl., 78 (2022), 101978
Shkredov I.D., “On Sums and Products of Combinatorial Cubes”, Finite Fields their Appl., 77 (2022), 101948
I. D. Shkredov, “Non-commutative methods in additive combinatorics and number theory”, Russian Math. Surveys, 76:6 (2021), 1065–1122
Shkredov I.D., Shparlinski I.E., Zaharescu A., “Bilinear Forms With Modular Square Roots and Twisted Second Moments of Half Integral Weight Dirichlet Series”, Int. Math. Res. Notices, 2021, rnab220
I. D. Shkredov, “Modular hyperbolas and bilinear forms of Kloosterman sums”, J. Number Theory, 220 (2021), 182–211
B. Kerr, S. Macourt, “Multilinear exponential sums with a general class of weights”, Ann. Scuola Norm. Super. Pisa-Cl. Sci., 22:3 (2021), 1105–1130
I. E. Shparlinski, Q. Wang, “Exponential sums with sparse polynomials over finite fields”, SIAM Discret. Math., 35:2 (2021), 976–987
K. I. Olmezov, “Additive Properties of Slowly Increasing Convex Sets”, Math. Notes, 108:6 (2020), 827–841
Thang Pham, Le Anh Vinh, “Distribution of distances in positive characteristic”, Pac. J. Math., 309:2 (2020), 437–451
N. G. Moshchevitin, I. D. Shkredov, “On a modular form of zaremba's conjecture”, Pac. J. Math., 309:1 (2020), 195–211
D. Di Benedetto, M. Z. Garaev, V. C. Garcia, D. Gonzalez-Sanchez, I. E. Shparlinski, C. A. Trujillo, “New estimates for exponential sums over multiplicative subgroups and intervals in prime fields”, J. Number Theory, 215 (2020), 261–274
N. Moshchevitin, B. Murphy, I. Shkredov, “Popular products and continued fractions”, Isr. J. Math., 238:2 (2020), 807–835
M. Rudnev, G. Shakan, I. D. Shkredov, “Stronger sum-product inequalities for small sets”, Proc. Amer. Math. Soc., 148:4 (2020), 1467–1479
S. Macourt, G. Petridis, I. D. Shkredov, I. E. Shparlinski, “Bounds of trilinear and trinomial exponential sums”, SIAM Discret. Math., 34:4 (2020), 2124–2136
I. D. Shkredov, “Some remarks on products of sets in the Heisenberg group and in the affine group”, Forum Math., 32:1 (2020), 189–199
A. Mohammadi, “Improved bounds on Gauss sums in arbitrary finite fields”, Int. J. Number Theory, 15:10 (2019), 2027–2041