Loading [MathJax]/jax/output/CommonHTML/jax.js
Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2001, Volume 1, Number 2, Pages 287–299
DOI: https://doi.org/10.17323/1609-4514-2001-1-2-287-299
(Mi mmj20)
 

This article is cited in 6 scientific papers (total in 6 papers)

Equivariant symplectic geometry of cotangent bundles

È. B. Vinberg

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF Citations (6)
References:
Abstract: It is proved that, for any action of a reductive algebraic group G on a quasiaffine algebraic variety X, there is a canonical G-equivariant symplectic rational Galois covering f:THorXTX, where HorX is the variety of horospheres (orbits of maximal unipotent subgroups of G) in X.
Key words and phrases: Cotangent bundle, symplectic geometry, algebraic group, algebraic variety, horosphere.
Received: January 15, 2001; in revised form March 25, 2001
Bibliographic databases:
MSC: 14M17, 22E46, 53C30
Language: English
Citation: È. B. Vinberg, “Equivariant symplectic geometry of cotangent bundles”, Mosc. Math. J., 1:2 (2001), 287–299
Citation in format AMSBIB
\Bibitem{Vin01}
\by \`E.~B.~Vinberg
\paper Equivariant symplectic geometry of cotangent bundles
\jour Mosc. Math.~J.
\yr 2001
\vol 1
\issue 2
\pages 287--299
\mathnet{http://mi.mathnet.ru/mmj20}
\crossref{https://doi.org/10.17323/1609-4514-2001-1-2-287-299}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1878279}
\zmath{https://zbmath.org/?q=an:1045.14020}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208587400005}
\elib{https://elibrary.ru/item.asp?id=8379044}
Linking options:
  • https://www.mathnet.ru/eng/mmj20
  • https://www.mathnet.ru/eng/mmj/v1/i2/p287
    Cycle of papers
    This publication is cited in the following 6 articles:
    1. E. B. Vinberg, S. G. Gindikin, “Degeneration of Horospheres in Spherical Homogeneous Spaces”, Funct. Anal. Appl., 52:2 (2018), 83–92  mathnet  crossref  crossref  mathscinet  isi  elib
    2. Zhgun V. S., “Svoistva faktor-otobrazheniya momentov dlya simplekticheskikh mnogoobrazii s invariantnymi lagranzhevymi podmnogoobraziyami”, Trudy NIISI RAN, 7:3 (2017), 39  crossref
    3. V. S. Zhgun, “Malaya gruppa Veilya i mnogoobrazie vyrozhdennykh orisfer”, Chebyshevskii sb., 16:4 (2015), 164–187  mathnet  elib
    4. Losev I.V., “Algebraic Hamiltonian actions”, Mathematische Zeitschrift, 263:3 (2009), 685–723  crossref  mathscinet  zmath  isi  elib
    5. I. V. Losev, “Combinatorial Invariants of Algebraic Hamiltonian Actions”, Mosc. Math. J., 8:3 (2008), 493–519  mathnet  crossref  mathscinet  zmath
    6. D. A. Timashev, “Equivariant symplectic geometry of cotangent bundles. II”, Mosc. Math. J., 6:2 (2006), 389–404  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:419
    Full-text PDF :1
    References:80
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025