Loading [MathJax]/jax/output/SVG/config.js
Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2014, Volume 26, Number 1, Pages 55–68 (Mi mm3438)  

This article is cited in 18 scientific papers (total in 18 papers)

Parallel multigrid method for solving elliptic equations

V. T. Zhukov, N. D. Novikova, O. B. Feodoritova

Keldysh Institute of Applied Mathematics
References:
Abstract: Proposed algorithm represents an efficient parallel implementation of the multigrid method of R. P. Fedorenko and is intended for solving three-dimensional elliptic equations. Scalability is provided by the usage of the Chebyshev iteration for solution of the coarsest grid equations and for construction of the smoothing procedures. The calculation results are given; they confirm the efficiency of the algorithm and scalability of the parallel code.
Keywords: numerical simulation, three-dimensional elliptic equations, multigrid, Chebyshev iteration, parallel implementation.
Received: 11.02.2013
English version:
Mathematical Models and Computer Simulations, 2014, Volume 6, Issue 4, Pages 425–434
DOI: https://doi.org/10.1134/S2070048214040103
Bibliographic databases:
Document Type: Article
UDC: 519.6
Language: Russian
Citation: V. T. Zhukov, N. D. Novikova, O. B. Feodoritova, “Parallel multigrid method for solving elliptic equations”, Mat. Model., 26:1 (2014), 55–68; Math. Models Comput. Simul., 6:4 (2014), 425–434
Citation in format AMSBIB
\Bibitem{ZhuNovFeo14}
\by V.~T.~Zhukov, N.~D.~Novikova, O.~B.~Feodoritova
\paper Parallel multigrid method for solving elliptic equations
\jour Mat. Model.
\yr 2014
\vol 26
\issue 1
\pages 55--68
\mathnet{http://mi.mathnet.ru/mm3438}
\transl
\jour Math. Models Comput. Simul.
\yr 2014
\vol 6
\issue 4
\pages 425--434
\crossref{https://doi.org/10.1134/S2070048214040103}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84921842527}
Linking options:
  • https://www.mathnet.ru/eng/mm3438
  • https://www.mathnet.ru/eng/mm/v26/i1/p55
  • This publication is cited in the following 18 articles:
    1. Min Tian, Qi Liu, Jingshan Pan, Ying Gou, Zanjun Zhang, “swPTS: an efficient parallel Thomas split algorithm for tridiagonal systems on Sunway manycore processors”, J Supercomput, 80:4 (2024), 4682  crossref
    2. Olga Borisovna Feodoritova, Natalia Dmitrievna Novikova, Mikhail Mikhailovich Krasnov, Victor Timofeevich Zhukov, “Multigrid method for numerical modelling of high temperature superconductors”, MathMon, 53 (2022), 72  crossref
    3. Sergey Dmitrievich Vikulin, Anton Yurevich Pershin, Alexander Pavlovich Sokolov, “Application of multigrid methods for solving systems of linear algebraic equations of large dimension in the context of model differential equations”, J. Phys.: Conf. Ser., 1740:1 (2021), 012051  crossref
    4. O B Feodoritova, V T Zhukov, “An adaptive multigrid on block-structured grids”, J. Phys.: Conf. Ser., 1640:1 (2020), 012020  crossref
    5. V. T. Zhukov, V. M. Krasnov, M. M. Krasnov, N. D. Novikova, O. B. Feodoritova, “O chislennoi modeli fizicheskikh protsessov v vysokotemperaturnykh sverkhprovodnikakh”, Preprinty IPM im. M. V. Keldysha, 2019, 129, 21 pp.  mathnet  crossref
    6. V. T. Zhukov, O. B. Feodoritova, “On development of parallel algorithms for the solution of parabolic and elliptic equations”, J. Math. Sci. (N. Y.), 254:5 (2021), 606–624  mathnet  crossref  mathscinet
    7. Jun Wu, Zhipeng Guo, Xiaopeng Zhang, Bin Su, Zhenhong Wang, Luo Chao, “Study of Coherent Solid Dendritic Precipitate Transformation Using a Phase-Field Model: Implementation of a Parallel Multigrid Scheme”, IOP Conf. Ser.: Mater. Sci. Eng., 394 (2018), 032089  crossref
    8. O B Feodoritova, M M Krasnov, V T Zhukov, “Adaptive technique for Chebyshev-Based solvers for three-dimensional elliptic equations”, J. Phys.: Conf. Ser., 1103 (2018), 012012  crossref
    9. J. Li, Zh. Zheng, Q. Tian, G. Zhang, F. Zheng, Yu. Pan, “Research on tridiagonal matrix solver design based on a combination of processors”, Comput. Electr. Eng., 62 (2017), 1–16  crossref  isi  scopus
    10. A. Gorobets, “On technology of large-scale CFD simulations”, Math. Models Comput. Simul., 8:6 (2016), 660–670  mathnet  crossref  elib
    11. V. T. Zhukov, M. M. Krasnov, N. D. Novikova, O. B. Feodoritova, “Algebraicheskii mnogosetochnyi metod c adaptivnymi sglazhivatelyami na osnove mnogochlenov Chebysheva”, Preprinty IPM im. M. V. Keldysha, 2016, 113, 32 pp.  mathnet  crossref
    12. Zhukov V.T., Krasnov M.M., Novikova N.D., Feodoritova O.B., “Multigrid Effectiveness on Modern Computing Architectures”, Program. Comput. Softw., 41:1 (2015), 14–22  crossref  isi  elib  scopus
    13. V. T. Zhukov, N. D. Novikova, O. B. Feodoritova, “Multigrid method for elliptic equations with anisotropic discontinuous coefficients”, Comput. Math. Math. Phys., 55:7 (2015), 1150–1163  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    14. V. T. Zhukov, N. D. Novikova, O. B. Feodoritova, “On the solution of evolution equations based on multigrid and explicit iterative methods”, Comput. Math. Math. Phys., 55:8 (2015), 1276–1289  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    15. V. T. Zhukov, N. D. Novikova, O. B. Feodoritova, “O mnogosetochnom i yavno-iteratsionnom metodakh resheniya parabolicheskikh uravnenii”, Preprinty IPM im. M. V. Keldysha, 2014, 028, 36 pp.  mathnet
    16. V. T. Zhukov, M. M. Krasnov, N. D. Novikova, O. B. Feodoritova, “Parallelnyi mnogosetochnyi metod: sravnenie effektivnosti na sovremennykh vychislitelnykh arkhitekturakh”, Preprinty IPM im. M. V. Keldysha, 2014, 031, 22 pp.  mathnet
    17. V. T. Zhukov, N. D. Novikova, O. B. Feodoritova, “Multigrid for anisotropic diffusion problems based on adaptive Chebyshev's smoothers”, Math. Models Comput. Simul., 7:2 (2015), 117–127  mathnet  crossref
    18. V. T. Zhukov, N. D. Novikova, O. B. Feodoritova, “O primenenii mnogosetochnogo i yavno-iteratsionnogo metodov k resheniyu parabolicheskikh uravnenii s anizotropnymi razryvnymi koeffitsientami”, Preprinty IPM im. M. V. Keldysha, 2014, 085, 24 pp.  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:666
    Full-text PDF :191
    References:106
    First page:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025