Abstract:
For difference elliptic equations, an algorithm based on Fedorenko’s multigrid method is constructed. The algorithm is intended for solving three-dimensional boundary value problems for equations with anisotropic discontinuous coefficients on parallel computers. Numerical results confirming the performance and parallel efficiency of the multigrid algorithm are presented. These qualities are ensured by using, as a multigrid triad, the standard Chebyshev iteration for coarsest grid equations, Chebyshev-type smoothing explicit iterative procedures, and intergrid transfer operators in problem-dependent form.
Citation:
V. T. Zhukov, N. D. Novikova, O. B. Feodoritova, “Multigrid method for elliptic equations with anisotropic discontinuous coefficients”, Zh. Vychisl. Mat. Mat. Fiz., 55:7 (2015), 1168–1182; Comput. Math. Math. Phys., 55:7 (2015), 1150–1163
This publication is cited in the following 13 articles:
V. A. Gordin, D. A. Shadrin, “Compact approximation of a two-dimensional boundary value problem for elliptic equations of the 2nd order with a discontinuous coefficient”, Math. Models Comput. Simul., 15:5 (2023), 920–943
Pan K., Wu X., Hu H., Yu Yu., Li Zh., “A New Fv Scheme and Fast Cell-Centered Multigrid Solver For 3D Anisotropic Diffusion Equations With Discontinuous Coefficients”, J. Comput. Phys., 449 (2022), 110794
Olga Borisovna Feodoritova, Natalia Dmitrievna Novikova, Mikhail Mikhailovich Krasnov, Victor Timofeevich Zhukov, “Multigrid method for numerical modelling of high temperature superconductors”, MathMon, 53 (2022), 72
V. T. Zhukov, O. B. Feodoritova, “Algoritm rascheta fizicheskikh protsessov v vysokotemperaturnykh sverkhprovodnikakh”, Preprinty IPM im. M. V. Keldysha, 2020, 124, 27 pp.
O B Feodoritova, V T Zhukov, “An adaptive multigrid on block-structured grids”, J. Phys.: Conf. Ser., 1640:1 (2020), 012020
V. T. Zhukov, V. M. Krasnov, M. M. Krasnov, N. D. Novikova, O. B. Feodoritova, “On numerical simulation of physical processes in high-temperature superconductors”, Keldysh Institute preprints, 2019, 129–21
V. T. Zhukov, N. D. Novikova, O. B. Feodoritova, “Chebyshevskie iteratsii s adaptivnym utochneniem nizhnei granitsy spektra matritsy”, Preprinty IPM im. M. V. Keldysha, 2018, 172, 32 pp.
V. T. Zhukov, N. D. Novikova, O. B. Feodoritova, “An adaptive Chebyshev iterative method”, Math. Models Comput. Simul., 11:3 (2019), 426–437
V. T. Zhukov, O. B. Feodoritova, “On development of parallel algorithms for the solution of parabolic and elliptic equations”, J. Math. Sci. (N. Y.), 254:5 (2021), 606–624
O B Feodoritova, M M Krasnov, V T Zhukov, “Adaptive technique for Chebyshev-Based solvers for three-dimensional elliptic equations”, J. Phys.: Conf. Ser., 1103 (2018), 012012
V. T. Zhukov, M. M. Krasnov, N. D. Novikova, O. B. Feodoritova, “Algebraicheskii mnogosetochnyi metod c adaptivnymi sglazhivatelyami na osnove mnogochlenov Chebysheva”, Preprinty IPM im. M. V. Keldysha, 2016, 113, 32 pp.
Feodoritova O.B. Novikova N.D. Zhukov V.T., “Multigrid Method For Diffusion Equations Based on Adaptive Smoothing”, Math. Montisnigri, 36 (2016), 14–26
V. T. Zhukov, N. D. Novikova, O. B. Feodoritova, “On the solution of evolution equations based on multigrid and explicit iterative methods”, Comput. Math. Math. Phys., 55:8 (2015), 1276–1289