Loading [MathJax]/jax/output/SVG/config.js
Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2010, Volume 22, Number 12, Pages 49–64 (Mi mm3052)  

This article is cited in 16 scientific papers (total in 16 papers)

Stochastic quasi gas dynamics equations. Viscous gas case

S. V. Bogomolov, L. W. Dorodnitsyn

Lomonosov Moscow State University
References:
Abstract: Some results of test calculations for one of a hierarchical set of gas dynamic models, obtained (a scheme in brief is available) from a system of stochastic differential equations, describing gas at moderate and small Knudsen numbers, are presented.
Keywords: Boltzmann equation, gas dynamic equations, jump and diffusion random processes, stochastic differential equations.
Received: 26.10.2009
English version:
Mathematical Models and Computer Simulations, 2011, Volume 3, Issue 4, Pages 457–467
DOI: https://doi.org/10.1134/S207004821104003X
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. V. Bogomolov, L. W. Dorodnitsyn, “Stochastic quasi gas dynamics equations. Viscous gas case”, Mat. Model., 22:12 (2010), 49–64; Math. Models Comput. Simul., 3:4 (2011), 457–467
Citation in format AMSBIB
\Bibitem{BogDor10}
\by S.~V.~Bogomolov, L.~W.~Dorodnitsyn
\paper Stochastic quasi gas dynamics equations. Viscous gas case
\jour Mat. Model.
\yr 2010
\vol 22
\issue 12
\pages 49--64
\mathnet{http://mi.mathnet.ru/mm3052}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2810217}
\transl
\jour Math. Models Comput. Simul.
\yr 2011
\vol 3
\issue 4
\pages 457--467
\crossref{https://doi.org/10.1134/S207004821104003X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84857065284}
Linking options:
  • https://www.mathnet.ru/eng/mm3052
  • https://www.mathnet.ru/eng/mm/v22/i12/p49
  • This publication is cited in the following 16 articles:
    1. S. V. Bogomolov, T. V. Zakharova, “Boltzmann equation without molecular chaos hypothesis”, Math. Models Comput. Simul., 13:5 (2021), 743–755  mathnet  crossref  crossref
    2. V. G. Zadorozhniy, V. S. Nozhkin, M. Y. Semenov, I. I. Ul'shin, “Stochastic model of heat transfer in the atmospheric surface layer”, Comput. Math. Math. Phys., 60:3 (2020), 459–471  mathnet  mathnet  crossref  crossref  isi  scopus
    3. S. V. Bogomolov, N. B. Esikova, “Stochastic magnetic hydrodynamic hierarchy in a strong external magnetic field”, Math. Models Comput. Simul., 12:2 (2020), 257–270  mathnet  crossref  crossref  elib
    4. S. V. Bogomolov, N. B. Esikova, A. E. Kuvshinnikov, P. N. Smirnov, Lecture Notes in Computer Science, 11386, Finite Difference Methods. Theory and Applications, 2019, 167  crossref
    5. V S Nozhkin, M E Semenov, I I Ulshin, “A stochastic approach to the solution to the differential equation of heat transfer in the atmosphere”, J. Phys.: Conf. Ser., 1368:4 (2019), 042012  crossref
    6. S. V. Bogomolov, N. B. Esikova, A. E. Kuvshinnikov, “Micro-macro Fokker–Planck–Kolmogorov models for a gas of rigid spheres”, Math. Models Comput. Simul., 8:5 (2016), 533–547  mathnet  crossref  elib
    7. S. V. Bogomolov, I. G. Gudich, “Towards a stochastic diffusion gas model verification”, Math. Models Comput. Simul., 6:3 (2014), 305–316  mathnet  crossref  mathscinet
    8. Howard Brenner, “Steady-state heat conduction in a gas undergoing rigid-body rotation. Comparison of Navier–Stokes–Fourier and bivelocity paradigms”, International Journal of Engineering Science, 70 (2013), 29  crossref
    9. Howard Brenner, “Proposal of a critical test of the Navier-Stokes-Fourier paradigm for compressible fluid continua”, Phys. Rev. E, 87:1 (2013)  crossref
    10. M. Hossein Gorji, Patrick Jenny, “A Fokker–Planck based kinetic model for diatomic rarefied gas flows”, Physics of Fluids, 25:6 (2013)  crossref
    11. S. V. Bogomolov, I. G. Gudich, “On a diffusion gas model in phase space at moderate Knudsen numbers”, Math. Models Comput. Simul., 5:2 (2013), 130–144  mathnet  crossref  mathscinet  elib
    12. S. Kokou Dadzie, “Second law of thermodynamics in volume diffusion hydrodynamics in multicomponent gas mixtures”, Physics Letters A, 376:45 (2012), 3223  crossref
    13. S. Kokou Dadzie, Jason M. Reese, “Analysis of the thermomechanical inconsistency of some extended hydrodynamic models at high Knudsen number”, Phys. Rev. E, 85:4 (2012)  crossref
    14. S. Kokou Dadzie, “Comment on “A solution algorithm for the fluid dynamic equations based on a stochastic model for molecular motion, Jenny et al., Journal of Computational Physics, 229 (2010)””, Journal of Computational Physics, 231:21 (2012), 7011  crossref
    15. S. Kokou Dadzie, Jason M. Reese, “Spatial stochasticity and non-continuum effects in gas flows”, Physics Letters A, 376:8-9 (2012), 967  crossref
    16. S. Kokou Dadzie, Howard Brenner, “Predicting enhanced mass flow rates in gas microchannels using nonkinetic models”, Phys. Rev. E, 86:3 (2012)  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:685
    Full-text PDF :282
    References:105
    First page:9
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025