Loading [MathJax]/jax/output/SVG/config.js
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2020, Volume 60, Number 3, Pages 462–475
DOI: https://doi.org/10.31857/S0044466920030175
(Mi zvmmf11048)
 

This article is cited in 8 scientific papers (total in 8 papers)

Stochastic model of heat transfer in the atmospheric surface layer

V. G. Zadorozhniyab, V. S. Nozhkinb, M. Y. Semenovabc, I. I. Ul'shinb

a Voronezh State University, Voronezh, 394006 Russia
b Zhukovsky and Gagarin Air Force Engineering Academy, Voronezh, 394064 Russia
c Federal Research Center Geophysical Survey, Russian Academy of Sciences, Obninsk, 249035 Russia
Citations (8)
References:
Abstract: A new stochastic model of heat transfer in the atmospheric surface layer is proposed. The model is based on the experimentally confirmed fact that the horizontal wind velocity can be treated as a random process. Accordingly, the model is formalized using a differential equation with random coefficients. Explicit formulas for the expectation and the second moment function of the solution to the heat transfer equation with random coefficients are given. The error induced by replacing the random coefficient of the equation with its expectation is estimated. An example is given demonstrating the efficiency of the proposed approach in the case of a Gaussian distribution of the horizontal wind velocity, when the expectation and the second moment function can be determined within the framework of model representations.
Key words: heat transfer equation, variational derivative, random process, expectation, second moment function, characteristic functional.
Funding agency Grant number
Russian Science Foundation 19-11-00197
The work by M.E. Semenov (see Sections 2, 3) was supported by the Russian Science Foundation, grant no. 19-11-00197.
Received: 10.02.2019
Revised: 10.02.2019
Accepted: 18.11.2019
English version:
Computational Mathematics and Mathematical Physics, 2020, Volume 60, Issue 3, Pages 459–471
DOI: https://doi.org/10.1134/S0965542520030173
Bibliographic databases:
Document Type: Article
UDC: 519.776
Language: Russian
Citation: V. G. Zadorozhniy, V. S. Nozhkin, M. Y. Semenov, I. I. Ul'shin, “Stochastic model of heat transfer in the atmospheric surface layer”, Zh. Vychisl. Mat. Mat. Fiz., 60:3 (2020), 462–475; Comput. Math. Math. Phys., 60:3 (2020), 459–471
Citation in format AMSBIB
\Bibitem{ZadNozSem20}
\by V.~G.~Zadorozhniy, V.~S.~Nozhkin, M.~Y.~Semenov, I.~I.~Ul'shin
\paper Stochastic model of heat transfer in the atmospheric surface layer
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2020
\vol 60
\issue 3
\pages 462--475
\mathnet{http://mi.mathnet.ru/zvmmf11048}
\crossref{https://doi.org/10.31857/S0044466920030175}
\elib{https://elibrary.ru/item.asp?id=42445969}
\transl
\jour Comput. Math. Math. Phys.
\yr 2020
\vol 60
\issue 3
\pages 459--471
\crossref{https://doi.org/10.1134/S0965542520030173}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000532248600009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85084478358}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11048
  • https://www.mathnet.ru/eng/zvmmf/v60/i3/p462
  • This publication is cited in the following 8 articles:
    1. Changjin Xu, Yicheng Pang, Zixin Liu, Jianwei Shen, Maoxin Liao, Peiluan Li, “Insights into COVID-19 stochastic modelling with effects of various transmission rates: simulations with real statistical data from UK, Australia, Spain, and India”, Phys. Scr., 99:2 (2024), 025218  crossref
    2. Changjin Xu, Zixin Liu, Yicheng Pang, Ali Akgül, “Stochastic analysis of a COVID-19 model with effects of vaccination and different transition rates: Real data approach”, Chaos, Solitons & Fractals, 170 (2023), 113395  crossref
    3. Dmitrenko V A., “Prediction of Laminar-Turbulent Transition on Flat Plate on the Basis of Stochastic Theory of Turbulence and Equivalence of Measures”, Continuum Mech. Thermodyn., 34:2 (2022), 601–615  crossref  mathscinet  adsnasa  isi
    4. Artur V. Dmitrenko, “Theoretical calculation of the laminar–turbulent transition in the round tube on the basis of stochastic theory of turbulence and equivalence of measures”, Continuum Mech. Thermodyn., 34:6 (2022), 1375  crossref
    5. R. Malek, Ch. Ziti, “A new numerical method to solve some PDE$_s$ in the unit ball and comparison with the finite element and the exact solution”, Int. J. Differ. Equat., 2021 (2021), 6696165  crossref  mathscinet  zmath  isi  scopus
    6. I E Kuznetcov, A A Kuznetcov, I O Baklanov, O V Strashko, “The probabilistic model of search and detection of ground objects using unmanned aerial vehicles in difficult weather conditions”, J. Phys.: Conf. Ser., 1745:1 (2021), 012048  crossref
    7. S. V. Bogomolov, T. V. Zakharova, “Boltzmann equation without molecular chaos hypothesis”, Math. Models Comput. Simul., 13:5 (2021), 743–755  mathnet  mathnet  crossref  crossref
    8. V. Nozhkin, M. Semenov, I. Ulshin, O. Sokolova, “A stochastic model of the moisture motion in the atmosphere: two-dimensional case”, 2020 Vi International Conference on Information Technology and Nanotechnology (IEEE Itnt-2020), ed. D. Kudryashov, IEEE, 2020  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:140
    References:35
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025