The work of A.L. has been funded by Russian Academic Excellence Project 5-100 and by Young Russian Mathematics award. The work of S.P. was supported in part by the RFBR grant 16-01-00562-a. N.A.S. was supported by the Russian Foundation RFBR-18-01-00273a.
Received: 07.11.2018 Revised: 23.01.2019
Bibliographic databases:
Document Type:
Article
Language: English
Linking options:
https://www.mathnet.ru/eng/jsm9
This publication is cited in the following 10 articles:
Kang Lu, “Twisted super Yangians of type AIII and their representations”, Journal of Algebra, 2025
Tamas Gombor, “Exact overlaps for all integrable two-site boundary states of $ \mathfrak{gl} $(N) symmetric spin chains”, J. High Energ. Phys., 2024:5 (2024)
A. Liashyk, S. Pakuliak, “On the R-matrix realization of the quantum loop algebra. The case of Uq(Dn(2))”, Journal of Mathematical Physics, 65:12 (2024)
Tamas Gombor, “Integrable crosscap states in $ \mathfrak{gl} $(N) spin chains”, J. High Energ. Phys., 2022:10 (2022)
A. N. Liashyk, S. Z. Pakuliak, “Algebraic Bethe ansatz for $\mathfrak o_{2n+1}$-invariant integrable
models”, Theoret. and Math. Phys., 206:1 (2021), 19–39
D. Karakhanyan, “Spinor Representations of Orthogonal and Symplectic Yangians”, Phys. Part. Nuclei Lett., 17:5 (2020), 794
A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Actions of the monodromy matrix elements onto $\mathfrak{gl}(m|n)$-invariant Bethe vectors”, J. Stat. Mech., 2020, 93104–31
D. Karakhanyan, R. Kirschner, “Spinorial R operator and Algebraic Bethe Ansatz”, Nuclear Physics B, 951 (2020), 114905
A. N. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Bethe vectors for orthogonal integrable models”, Theoret. and Math. Phys., 201:2 (2019), 1545–1564