Loading [MathJax]/jax/output/SVG/config.js
Journal of Statistical Mechanics: Theory and Experiment
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Main page
About this project
Software
Classifications
Links
Terms of Use

Search papers
Search references

RSS
Current issues
Archive issues
What is RSS






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Statistical Mechanics: Theory and Experiment, 2019, Volume 2019, 44001, 24 pp.
DOI: https://doi.org/10.1088/1742-5468/ab02f0
(Mi jsm9)
 

This article is cited in 10 scientific papers (total in 10 papers)

New symmetries of ${\mathfrak{gl}(N)}$-invariant Bethe vectors

A. Liashykabcd, S. Z. Pakuliakef, E. Ragoucyg, N. A. Slavnovh

a Bogolyubov Institute for Theoretical Physics, NAS of Ukraine, Kiev, Ukraine
b Faculty of Mathematics, National Research University Higher School of Economics, Moscow, Russia
c Skolkovo Institute of Science and Technology, Moscow, Russia
d Institut Denis-Poisson, Universit de Tours, Parc de Grandmont, 37200 Tours, France
e Moscow Institute of Physics and Technology, Dolgoprudny, Moscow reg., Russia
f Laboratory of Theoretical Physics, JINR, Dubna, Moscow reg., Russia
g Laboratoire de Physique Théorique LAPTh, CNRS and USMB, BP 110, 74941 Annecy-le-Vieux Cedex, France
h Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
Citations (10)
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 5-100
Contest «Young Russian Mathematics»
Russian Foundation for Basic Research 16-01-00562-a
18-01-00273a
The work of A.L. has been funded by Russian Academic Excellence Project 5-100 and by Young Russian Mathematics award. The work of S.P. was supported in part by the RFBR grant 16-01-00562-a. N.A.S. was supported by the Russian Foundation RFBR-18-01-00273a.
Received: 07.11.2018
Revised: 23.01.2019
Bibliographic databases:
Document Type: Article
Language: English
Linking options:
  • https://www.mathnet.ru/eng/jsm9
  • This publication is cited in the following 10 articles:
    1. Kang Lu, “Twisted super Yangians of type AIII and their representations”, Journal of Algebra, 2025  crossref
    2. Tamas Gombor, “Exact overlaps for all integrable two-site boundary states of $ \mathfrak{gl} $(N) symmetric spin chains”, J. High Energ. Phys., 2024:5 (2024)  crossref
    3. A. Liashyk, S. Pakuliak, “On the R-matrix realization of the quantum loop algebra. The case of Uq(Dn(2))”, Journal of Mathematical Physics, 65:12 (2024)  crossref
    4. Tamas Gombor, “Integrable crosscap states in $ \mathfrak{gl} $(N) spin chains”, J. High Energ. Phys., 2022:10 (2022)  crossref
    5. Tamás Gombor, “On exact overlaps for gl(N) symmetric spin chains”, Nuclear Physics B, 983 (2022), 115909  crossref
    6. A. N. Liashyk, S. Z. Pakuliak, “Algebraic Bethe ansatz for $\mathfrak o_{2n+1}$-invariant integrable models”, Theoret. and Math. Phys., 206:1 (2021), 19–39  mathnet  mathnet  crossref  crossref  isi
    7. D. Karakhanyan, “Spinor Representations of Orthogonal and Symplectic Yangians”, Phys. Part. Nuclei Lett., 17:5 (2020), 794  crossref
    8. A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Actions of the monodromy matrix elements onto $\mathfrak{gl}(m|n)$-invariant Bethe vectors”, J. Stat. Mech., 2020, 93104–31  mathnet  crossref  isi  scopus
    9. D. Karakhanyan, R. Kirschner, “Spinorial R operator and Algebraic Bethe Ansatz”, Nuclear Physics B, 951 (2020), 114905  crossref
    10. A. N. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Bethe vectors for orthogonal integrable models”, Theoret. and Math. Phys., 201:2 (2019), 1545–1564  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:125
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025