Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2021, Volume 206, Number 1, Pages 23–46
DOI: https://doi.org/10.4213/tmf9968
(Mi tmf9968)
 

This article is cited in 5 scientific papers (total in 5 papers)

Algebraic Bethe ansatz for $\mathfrak o_{2n+1}$-invariant integrable models

A. N. Liashykab, S. Z. Pakuliakcd

a Skolkovo Institute of Science and Technology, Moscow, Russia
b National Research University "Higher School of Economics", Moscow, Russia
c Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Oblast, Russia
d Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna, Moscow Oblast, Russia
Full-text PDF (627 kB) Citations (5)
References:
Abstract: We study the class of $\mathfrak o_{2n+1}$-invariant quantum integrable models in the framework of the algebraic Bethe ansatz and propose a construction of the $\mathfrak o_{2n+1}$-invariant Bethe vector in terms of the Drinfeld currents for the Yangian double $\mathcal DY(\mathfrak o_{2n+1})$. We calculate the action of the monodromy matrix elements on the off-shell Bethe vectors for these models and obtain recurrence relations for these vectors. The action formulas can be used to investigate scalar products of Bethe vectors in $\mathfrak o_{2n+1}$-invariant models.
Keywords: algebraic Bethe ansatz, Yangian double of simple Lie algebra, Bethe vector.
Funding agency Grant number
Russian Science Foundation 19-11-00275
This research was performed at the Skolkovo Institute of Science and Technology under a grant from the Russian Science Foundation (Project No. 19-11-00275).
Received: 09.08.2020
Revised: 08.09.2020
English version:
Theoretical and Mathematical Physics, 2021, Volume 206, Issue 1, Pages 19–39
DOI: https://doi.org/10.1134/S0040577921010025
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. N. Liashyk, S. Z. Pakuliak, “Algebraic Bethe ansatz for $\mathfrak o_{2n+1}$-invariant integrable models”, TMF, 206:1 (2021), 23–46; Theoret. and Math. Phys., 206:1 (2021), 19–39
Citation in format AMSBIB
\Bibitem{LiaPak21}
\by A.~N.~Liashyk, S.~Z.~Pakuliak
\paper Algebraic Bethe ansatz for $\mathfrak o_{2n+1}$-invariant integrable
models
\jour TMF
\yr 2021
\vol 206
\issue 1
\pages 23--46
\mathnet{http://mi.mathnet.ru/tmf9968}
\crossref{https://doi.org/10.4213/tmf9968}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2025782}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021TMP...206...19L}
\transl
\jour Theoret. and Math. Phys.
\yr 2021
\vol 206
\issue 1
\pages 19--39
\crossref{https://doi.org/10.1134/S0040577921010025}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000664262800002}
Linking options:
  • https://www.mathnet.ru/eng/tmf9968
  • https://doi.org/10.4213/tmf9968
  • https://www.mathnet.ru/eng/tmf/v206/i1/p23
  • This publication is cited in the following 5 articles:
    1. Allan John Gerrard, Kohei Motegi, Kazumitsu Sakai, “Higher rank elliptic partition functions and multisymmetric elliptic functions”, Nuclear Physics B, 1011 (2025), 116805  crossref
    2. A. Liashyk, Z. Pakuliak, “Recurrence relations for off-shell Bethe vectors in trigonometric integrable models”, J. Phys. A-Math. Theor., 55:7 (2022), 075201  crossref  mathscinet  isi  scopus
    3. V. Regelskis, “Algebraic Bethe ansatz for spinor R-matrices”, SciPost Phys., 12:2 (2022), 067  crossref  mathscinet  isi
    4. A. Liashyk, S. Pakuliak, “On the R-matrix realization of quantum loop algebras”, SciPost Phys., 12:5 (2022)  crossref  mathscinet
    5. T. Gombor, “Integrable crosscap states in $ \mathfrak{gl} (n)$ spin chains”, J. High Energ. Phys., 2022:10 (2022)  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:257
    Full-text PDF :93
    References:43
    First page:4
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025