Loading [MathJax]/jax/output/SVG/config.js
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2023, Number 10, Pages 46–59
DOI: https://doi.org/10.26907/0021-3446-2023-10-46-59
(Mi ivm9940)
 

This article is cited in 10 scientific papers (total in 10 papers)

Inverse coefficient problems for a time-fractional wave equation with the generalized Riemann–Liouville time derivative

H. H. Turdievab

a Bukhara branch of the institute of Mathematics named after V.I. Romanovskiy at the Academy of sciences of the Republic of Uzbekistan, 11 M. Ikbol str., Bukhara 200118 Republic of Uzbekistan
b Bukhara State University, 11 M. Ikbol str., Bukhara 200118 Republic of Uzbekistan
References:
Abstract: This paper considers the inverse problem of determining the time-dependent coefficient in the fractional wave equation with Hilfer derivative. In this case, the direct problem is initial-boundary value problem for this equation with Cauchy type initial and nonlocal boundary conditions. As overdetermination condition nonlocal integral condition with respect to direct problem solution is given. By the Fourier method, this problem is reduced to equivalent integral equations. Then, using the Mittag-Leffler function and the generalized singular Gronwall inequality, we get apriori estimate for solution via unknown coefficient which we will need to study of the inverse problem. The inverse problem is reduced to the equivalent integral of equation of Volterra type. The principle of contracted mapping is used to solve this equation. Local existence and global uniqueness results are proved.
Keywords: fractional derivative, Riemann–Liouville fractional integral, inverse problem, integral equation, Fourier series, Banach fixed point theorem.
Received: 29.03.2023
Revised: 09.05.2023
Accepted: 29.05.2023
Document Type: Article
UDC: 517
Language: Russian
Citation: H. H. Turdiev, “Inverse coefficient problems for a time-fractional wave equation with the generalized Riemann–Liouville time derivative”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 10, 46–59
Citation in format AMSBIB
\Bibitem{Tur23}
\by H.~H.~Turdiev
\paper Inverse coefficient problems for a time-fractional wave equation with the generalized Riemann--Liouville time derivative
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2023
\issue 10
\pages 46--59
\mathnet{http://mi.mathnet.ru/ivm9940}
\crossref{https://doi.org/10.26907/0021-3446-2023-10-46-59}
Linking options:
  • https://www.mathnet.ru/eng/ivm9940
  • https://www.mathnet.ru/eng/ivm/y2023/i10/p46
  • This publication is cited in the following 10 articles:
    1. Jonibek J. Jumaev, “NUMERICAL ANALYSIS OF INVERSE PROBLEMS FOR THE DIFFUSION EQUATION WITH INITIAL-BOUNDARY AND OVERDETERMINATION CONDITIONS”, J Math Sci, 2025  crossref
    2. D. K. Durdiev, T. R. Suyarov, Kh. Kh. Turdiev, “Obratnaya koeffitsientnaya zadacha dlya drobnogo telegrafnogo uravneniya s sootvetstvuyuschei drobnoi proizvodnoi po vremeni”, Izv. vuzov. Matem., 2025, no. 2, 39–52  mathnet  crossref
    3. D. K. Durdiev, D. A. Toshev, H. H. Turdiev, “Determining a Source Function in the Mixed Parabolic–Hyperbolic Equation with Characteristic Type Change Line”, Lobachevskii J Math, 45:3 (2024), 1032  crossref
    4. D. K. Durdiev, H. H. Turdiev, “Determining of a Space Dependent Coefficient of Fractional Diffusion Equation with the Generalized Riemann–Liouville Time Derivative”, Lobachevskii J Math, 45:2 (2024), 648  crossref
    5. D. K. Durdiev, J. J. Jumaev, “Recovering Source Function and Kernel for a Time-fractional Diffusion Equation in the Bounded Domain”, Lobachevskii J Math, 45:4 (2024), 1691  crossref
    6. U. D. Durdiev, A. A. Rakhmonov, “Obratnaya zadacha dlya differentsialnogo uravneniya chetvertogo poryadka s drobnym operatorom Kaputo”, Izv. vuzov. Matem., 2024, no. 9, 22–33  mathnet  crossref
    7. D. K. Durdiev, I. I. Hasanov, “Inverse coefficient problem for a partial differential equation with multi-term orders fractional Riemann–Liouville derivatives”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 34:3 (2024), 321–338  mathnet  crossref
    8. D. K. Durdiev, “Initial Boundary Value and Inverse Coefficient Problems for One-Dimensional Fractional Diffusion Equation in a Half-Line”, Lobachevskii J Math, 45:7 (2024), 3265  crossref
    9. H. H. Turdiev, “Solvability Cauchy Problem for Time-Space Fractional Diffusion-Wave Equation with Variable Coefficient”, Lobachevskii J Math, 45:10 (2024), 5281  crossref
    10. U. D. Durdiev, “Global Solvability of the Kernel Identification Problem for the Integro-Differential Equation of Beam Vibrations”, Lobachevskii J Math, 45:11 (2024), 5802  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:115
    Full-text PDF :36
    References:31
    First page:5
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025