Loading [MathJax]/jax/output/SVG/config.js
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2025, Number 2, Pages 39–52
DOI: https://doi.org/10.26907/0021-3446-2025-2-39-52
(Mi ivm10061)
 

An inverse coefficient problem for the fractional telegraph equation with the corresponding fractional derivative in time

D. K. Durdievab, T. R. Suyarovab, Kh. Kh. Turdievab

a V.I. Romanovskiy Institute of Mathematics Uzbekistan Academy of Sciences, 9 University str., Tashkent, 100174 Republic of Uzbekistan
b Bukhara State University, 11 M. Ikbal str., Bukhara, 200117 Republic of Uzbekistan
References:
Abstract: This work investigates an initial-boundary value and an inverse coefficient problem of determining a time dependent coefficient in the fractional wave equation with the conformable fractional derivative and an integral. In the beginning, the initial boundary value problem (direct problem) is considered. By the Fourier method this problem is reduced to equivalent integral equations. Then, using the technique of estimating these functions and the generalized Gronwall inequality, we get apriori estimate for the solution via the unknown coefficient which will be used to study the inverse problem. The inverse problem is reduced to an equivalent integral equation of Volterra type. To show the existence and uniqueness of the solution to this equation, the Banach principle is applied. The local existence and uniqueness results are obtained.
Keywords: inverse problem, conformable fractional derivative, integral equation, Fourier series, Banach fixed point theorem.
Received: 30.01.2024
Revised: 30.01.2024
Accepted: 20.03.2024
Document Type: Article
UDC: 517.923: 517.958
Language: Russian
Citation: D. K. Durdiev, T. R. Suyarov, Kh. Kh. Turdiev, “An inverse coefficient problem for the fractional telegraph equation with the corresponding fractional derivative in time”, Izv. Vyssh. Uchebn. Zaved. Mat., 2025, no. 2, 39–52
Citation in format AMSBIB
\Bibitem{DurSuyTur25}
\by D.~K.~Durdiev, T.~R.~Suyarov, Kh.~Kh.~Turdiev
\paper An inverse coefficient problem for the fractional telegraph equation with the corresponding fractional derivative in time
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2025
\issue 2
\pages 39--52
\mathnet{http://mi.mathnet.ru/ivm10061}
\crossref{https://doi.org/10.26907/0021-3446-2025-2-39-52}
Linking options:
  • https://www.mathnet.ru/eng/ivm10061
  • https://www.mathnet.ru/eng/ivm/y2025/i2/p39
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:50
    Full-text PDF :2
    References:11
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025