Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2023, Number 8, Pages 10–22
DOI: https://doi.org/10.26907/0021-3446-2023-8-10-22
(Mi ivm9904)
 

This article is cited in 2 scientific papers (total in 2 papers)

Inverse source problem for the equation of forced vibrations of a beam

U. D. Durdievab

a Bukhara State University, 11 M. Ikbol str., Bukhara, 200118 Republic of Uzbekistan
b Bukhara Branch of the Institute of Mathematics named after V.I. Romanovskiy, 9 University str., Tashkent, 100174 Republic of Uzbekistan
Full-text PDF (391 kB) Citations (2)
References:
Abstract: In this article, direct and inverse problems are studied for the equation of forced vibrations of a beam of finite length with a variable stiffness coefficient at the lowest term. In the direct problem, we consider the initial-boundary value problem for this equation with boundary conditions in the form of a beam fixed at one end and free at the other. The unknown inverse problem is the factor of the right side, which depends on the space variable x. To determine it with respect to the solution of the direct problem, an integral overdetermination condition is specified. The uniqueness of the solution of the direct problem is proved by the method of energy estimates. Using the eigenvalues and eigenfunctions of the corresponding elliptic operator, the problems are reduced to integral equations. The method of successive approximations is applied to these equations and existence and uniqueness theorems for solutions are proved.
Keywords: integral equation, eigenvalue, eigenfunction, existence, uniqueness, override condition.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2023-939
Received: 28.12.2022
Revised: 16.05.2023
Accepted: 29.05.2023
Document Type: Article
UDC: 517.953:517.958
Language: Russian
Citation: U. D. Durdiev, “Inverse source problem for the equation of forced vibrations of a beam”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 8, 10–22
Citation in format AMSBIB
\Bibitem{Dur23}
\by U.~D.~Durdiev
\paper Inverse source problem for the equation of forced vibrations of a beam
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2023
\issue 8
\pages 10--22
\mathnet{http://mi.mathnet.ru/ivm9904}
\crossref{https://doi.org/10.26907/0021-3446-2023-8-10-22}
Linking options:
  • https://www.mathnet.ru/eng/ivm9904
  • https://www.mathnet.ru/eng/ivm/y2023/i8/p10
  • This publication is cited in the following 2 articles:
    1. D. K. Durdiev, T. R. Suyarov, Kh. Kh. Turdiev, “Obratnaya koeffitsientnaya zadacha dlya drobnogo telegrafnogo uravneniya s sootvetstvuyuschei drobnoi proizvodnoi po vremeni”, Izv. vuzov. Matem., 2025, no. 2, 39–52  mathnet  crossref
    2. U. D. Durdiev, A. A. Rakhmonov, “Obratnaya zadacha dlya differentsialnogo uravneniya chetvertogo poryadka s drobnym operatorom Kaputo”, Izv. vuzov. Matem., 2024, no. 9, 22–33  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:225
    Full-text PDF :38
    References:48
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025