Loading [MathJax]/jax/output/SVG/config.js
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2020, Number 10, Pages 33–46
DOI: https://doi.org/10.26907/0021-3446-2020-10-33-46
(Mi ivm9617)
 

This article is cited in 11 scientific papers (total in 11 papers)

Gellerstedt type problem for the loaded parabolic-hyperbolic type equation with Caputo and Erdelyi-Kober operators of fractional order

B. I. Islomov, O. Kh. Abdullaev

National University of Uzbekistan naimed after M.Ulugbek, 4 Universitetskaya str., Tashkent, 100174 Republic of Uzbekistan
References:
Abstract: This work devoted to uniqueness and existence of solution of the local and non-local problems with integral gluing condition for the loaded parabolic-hyperbolic type equation involving Caputo derivatives which trace of solution involved into the Erdelyi-Kober integral operator. The uniqueness of solution is proved using by the method of integral energy. The existence of solution was proved by the method of integral equations.
Keywords: loaded equation, parabolic-hyperbolic type, Caputo derivatives, integral gluing condition, uniqueness and existence of solution, integral equations.
Received: 27.11.2019
Revised: 17.01.2020
Accepted: 29.06.2020
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2020, Volume 64, Issue 10, Pages 29–42
DOI: https://doi.org/10.3103/S1066369X20100047
Bibliographic databases:
Document Type: Article
UDC: 517.956
Language: Russian
Citation: B. I. Islomov, O. Kh. Abdullaev, “Gellerstedt type problem for the loaded parabolic-hyperbolic type equation with Caputo and Erdelyi-Kober operators of fractional order”, Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 10, 33–46; Russian Math. (Iz. VUZ), 64:10 (2020), 29–42
Citation in format AMSBIB
\Bibitem{IslAbd20}
\by B.~I.~Islomov, O.~Kh.~Abdullaev
\paper Gellerstedt type problem for the loaded parabolic-hyperbolic type equation with Caputo and Erdelyi-Kober operators of fractional order
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2020
\issue 10
\pages 33--46
\mathnet{http://mi.mathnet.ru/ivm9617}
\crossref{https://doi.org/10.26907/0021-3446-2020-10-33-46}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2020
\vol 64
\issue 10
\pages 29--42
\crossref{https://doi.org/10.3103/S1066369X20100047}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000589204500004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85095982281}
Linking options:
  • https://www.mathnet.ru/eng/ivm9617
  • https://www.mathnet.ru/eng/ivm/y2020/i10/p33
  • This publication is cited in the following 11 articles:
    1. A. K. Urinov, D. M. Mirsaburova, “Gellerstedt–Moiseev Problem with Data on Parallel Characteristics in the Unbounded Domain for a Mixed Type Equation with Singular Coefficients”, Lobachevskii J Math, 45:3 (2024), 1318  crossref
    2. O. Kh Abdullaev, “Nelokal'naya zadacha s integral'nym usloviem skleivaniya dlya nagruzhennogo parabolo-giperbolicheskogo uravneniya s drobnoy proizvodnoy Kaputo”, Differentsialnye uravneniya, 59:3 (2023), 350  crossref
    3. O. Kh. Abdullaev, “A Nonlocal Problem with an Integral Matching Condition for a Loaded Parabolic-Hyperbolic Equation with a Fractional Caputo Derivative”, Diff Equat, 59:3 (2023), 351  crossref
    4. Umida Baltaeva, Praveen Agarwal, Shaher Momani, “Extension of the Tricomi problem for a loaded parabolic–hyperbolic equation with a characteristic line of change of type”, Math Methods in App Sciences, 46:12 (2023), 12190  crossref
    5. B. Zh. Kadirkulov, G. A. Kayumova, “Nelokalnaya zadacha dlya uravneniya smeshannogo tipa drobnogo poryadka s involyutsiei”, Geometriya, mekhanika i differentsialnye uravneniya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 210, VINITI RAN, M., 2022, 55–65  mathnet  crossref
    6. T. K. Yuldashev, T. G. Ergashev, T. A. Abduvahobov, “Nonlinear system of impulsive integro-differential equations with Hilfer fractional operator and mixed maxima”, Chelyab. fiz.-matem. zhurn., 7:3 (2022), 312–325  mathnet  crossref  mathscinet
    7. Praveen Agarwal, Umida Baltaeva, Nafosat Vaisova, “Cauchy problem for a parabolic–hyperbolic equation with non‐characteristic line of type changing”, Math Methods in App Sciences, 45:13 (2022), 8294  crossref
    8. O. Kh. Abdullaev, A. A. Matchanova, “On a Problem for the Third Order Equation with Parabolic-Hyperbolic Operator Including a Fractional Derivative”, Lobachevskii J Math, 43:2 (2022), 275  crossref
    9. U. Baltaeva, Y. Alikulov, I. I. Baltaeva, A. Ashirova, “Analog of the Darboux problem for a loaded integro-differential equation involving the Caputo fractional derivative”, Nanosyst.-Phys. Chem. Math., 12:4 (2021), 418–424  crossref  mathscinet  isi  scopus
    10. Akmaljon Abdullayev, Muyassar Hidoyatova, PROCEEDINGS OF THE III INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES IN MATERIALS SCIENCE, MECHANICAL AND AUTOMATION ENGINEERING: MIP: Engineering-III – 2021, 2402, PROCEEDINGS OF THE III INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES IN MATERIALS SCIENCE, MECHANICAL AND AUTOMATION ENGINEERING: MIP: Engineering-III – 2021, 2021, 070021  crossref
    11. Muhammadali Jalilov, Gavhar Kayumova, INTERNATIONAL UZBEKISTAN-MALAYSIA CONFERENCE ON “COMPUTATIONAL MODELS AND TECHNOLOGIES (CMT2020)”: CMT2020, 2365, INTERNATIONAL UZBEKISTAN-MALAYSIA CONFERENCE ON “COMPUTATIONAL MODELS AND TECHNOLOGIES (CMT2020)”: CMT2020, 2021, 070010  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:148
    Full-text PDF :55
    References:38
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025