Loading [MathJax]/jax/output/SVG/config.js
Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 210, Pages 55–65
DOI: https://doi.org/10.36535/0233-6723-2022-210-55-65
(Mi into1015)
 

Nonlocal problem for a fractional-order mixed-type equation with involution

B. J. Kadirkulova, G. A. Kayumovab

a Tashkent State Institute of Oriental Studies
b Karshi Engineering Economics Institute, Karshi
References:
Abstract: In this paper, we examine the unique solvability of a nonlocal problem for a nonlocal analog of a mixed parabolic-hyperbolic equation with a generalized Riemann–Liouville operator and involution with respect to the space variable. A criterion for the uniqueness of the solution is established and sufficient conditions for the unique solvability of the problem are determined. By the method of separation of variables, a solution is constructed in the form of an absolutely and uniformly convergent series with respect to eigenfunctions of the corresponding one-dimensional spectral problem. The stability of the solution of the problem under consideration under a nonlocal condition is established.
Keywords: mixed-type equation, equation with involution, nonlocal problem, nonlocal differential equation, gluing conditions, Hilfer operator, Mittag-Leffler function, Fourier series.
Document Type: Article
UDC: 517.956.6
MSC: 34K37, 35A09, 35M12
Language: Russian
Citation: B. J. Kadirkulov, G. A. Kayumova, “Nonlocal problem for a fractional-order mixed-type equation with involution”, Geometry, Mechanics, and Differential Equations, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 210, VINITI, Moscow, 2022, 55–65
Citation in format AMSBIB
\Bibitem{KadKay22}
\by B.~J.~Kadirkulov, G.~A.~Kayumova
\paper Nonlocal problem for a fractional-order mixed-type equation with involution
\inbook Geometry, Mechanics, and Differential Equations
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 210
\pages 55--65
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1015}
\crossref{https://doi.org/10.36535/0233-6723-2022-210-55-65}
Linking options:
  • https://www.mathnet.ru/eng/into1015
  • https://www.mathnet.ru/eng/into/v210/p55
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:134
    Full-text PDF :93
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025