Loading [MathJax]/jax/output/SVG/config.js
Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 210, Pages 66–76
DOI: https://doi.org/10.36535/0233-6723-2022-210-66-76
(Mi into1016)
 

Boundary-value problem with an integral conjugation condition for a partial differential equation with the fractional Riemann–Liouville derivative that describes gas flows in a channel surrounded by a porous medium

A. K. Urinova, E. T. Karimovb, S. Kerbalc

a Ferghana State University
b V. I. Romanovskiy Institute of Mathematcs of the Academy of Sciences of Uzbekistan
c Sultan Qaboos University
References:
Abstract: A boundary-value problem with an integral conjugation condition for a mixed equation with a fractional integro-differential operator was examined. The main result of the work is the proof of the unique solvability of the boundary-value problem with an integral conjugation condition for the equation consisting of two partial differential equations with the fractional Riemann–Liouville derivative in a rectangular domain. The problem is reduced to a Volterra integral equation of the second kind. The special role of the conjugation condition in the solvability of the problem is shown.
Keywords: boundary-value problem, integral conjugation condition, mixed fractional-order equation, gas flow in a channel.
Document Type: Article
UDC: 517.956.6
MSC: 35M10
Language: Russian
Citation: A. K. Urinov, E. T. Karimov, S. Kerbal, “Boundary-value problem with an integral conjugation condition for a partial differential equation with the fractional Riemann–Liouville derivative that describes gas flows in a channel surrounded by a porous medium”, Geometry, Mechanics, and Differential Equations, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 210, VINITI, Moscow, 2022, 66–76
Citation in format AMSBIB
\Bibitem{UriKarKer22}
\by A.~K.~Urinov, E.~T.~Karimov, S.~Kerbal
\paper Boundary-value problem with an integral conjugation condition for a partial differential equation with the fractional Riemann--Liouville derivative that describes gas flows in a channel surrounded by a porous medium
\inbook Geometry, Mechanics, and Differential Equations
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 210
\pages 66--76
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1016}
\crossref{https://doi.org/10.36535/0233-6723-2022-210-66-76}
Linking options:
  • https://www.mathnet.ru/eng/into1016
  • https://www.mathnet.ru/eng/into/v210/p66
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:146
    Full-text PDF :87
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025