Abstract:
Is known complete classification of dimetric phenomenologically symmetrical geometries of two sets of rank (n+1,2), where n=1,2,… . From that classification it can be seen that some geometries of higher rank include in it geometries of previous rank. Such embedding can be proved (or disproved) by solving corresponding functional equation in which fact of embedding of geometries is expressed on language of metric functions that define them.
Keywords:
geometry of two sets, metric function, phenomenological symmetry, embedding of geometries, functional equation.
Citation:
R. A. Bogdanova, G. G. Mikhailichenko, R. M. Muradov, “Successive in rank (n+1,2) embedding of dimetric phenomenologically symmetric geometries of two sets”, Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 6, 9–14; Russian Math. (Iz. VUZ), 64:6 (2020), 6–10
This publication is cited in the following 6 articles:
R. A. Bogdanova, G. G. Mikhailichenko, “Obschee nevyrozhdennoe reshenie odnoi sistemy funktsionalnykh uravnenii”, Vladikavk. matem. zhurn., 26:1 (2024), 56–67
R. A. Bogdanova, V. A. Kyrov, “Reshenie sistemy funktsionalnykh uravnenii, svyazannoi s affinnoi gruppoi”, Vladikavk. matem. zhurn., 26:3 (2024), 24–32
V. A. Kyrov, G. G. Mikhailichenko, “Reshenie trekh sistem funktsionalnykh uravnenii, svyazannykh s kompleksnymi, dvoinymi i dualnymi chislami”, Izv. vuzov. Matem., 2023, no. 7, 42–51
V. A. Kyrov, “Reshenie nekotorykh sistem funktsionalnykh uravnenii, svyazannykh s kompleksnymi, dvoinymi i dualnymi chislami”, Materialy Voronezhskoi mezhdunarodnoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii i smezhnye problemy», Voronezh, 27 yanvarya — 1 fevralya 2023 g. Chast 3, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 229, VINITI RAN, M., 2023, 37–46
V. A. Kyrov, G. G. Mikhailichenko, “Solving Three Systems of Functional Equations Associated with Complex, Double, and Dual Numbers”, Russ Math., 67:7 (2023), 34
V. A. Kyrov, G. G. Mikhailichenko, “Nondegenerate canonical solutions of one system of functional equations”, Russian Math. (Iz. VUZ), 65:8 (2021), 40–48