Abstract:
In this paper, we solve a special system of functional equations arising in the problem of embedding an additive two-metric phenomenologically symmetric geometry of two sets of rank (2,2) into a multiplicative two-metric phenomenologically symmetric geometry of two sets of rank (3,2). We are looking for non-degenerate solutions of this system, which are very difficult to determine in general terms. However, the problem of determining the set of its fundamental solutions associated with a finite number of Jordan forms of nonzero second-order matrices turned out to be much simpler and more meaningful in the mathematical sense. The methods developed by the authors can be applied to other systems of functional equations, the nondegenerate solutions of which prove the possibility of mutual embedding of some geometries of two sets.
Keywords:
geometry of two sets, functional equation, Jordan form of matrices.
Citation:
V. A. Kyrov, G. G. Mikhailichenko, “Nondegenerate canonical solutions of one system of functional equations”, Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 8, 46–55; Russian Math. (Iz. VUZ), 65:8 (2021), 40–48
This publication is cited in the following 5 articles:
R. A. Bogdanova, G. G. Mikhailichenko, “Obschee nevyrozhdennoe reshenie odnoi sistemy funktsionalnykh uravnenii”, Vladikavk. matem. zhurn., 26:1 (2024), 56–67
R. A. Bogdanova, V. A. Kyrov, “Reshenie sistemy funktsionalnykh uravnenii, svyazannoi s affinnoi gruppoi”, Vladikavk. matem. zhurn., 26:3 (2024), 24–32
V. A. Kyrov, G. G. Mikhailichenko, “Reshenie trekh sistem funktsionalnykh uravnenii, svyazannykh s kompleksnymi, dvoinymi i dualnymi chislami”, Izv. vuzov. Matem., 2023, no. 7, 42–51
V. A. Kyrov, “Reshenie nekotorykh sistem funktsionalnykh uravnenii, svyazannykh s kompleksnymi, dvoinymi i dualnymi chislami”, Materialy Voronezhskoi mezhdunarodnoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii i smezhnye problemy», Voronezh, 27 yanvarya — 1 fevralya 2023 g. Chast 3, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 229, VINITI RAN, M., 2023, 37–46
V. A. Kyrov, G. G. Mikhailichenko, “Solving Three Systems of Functional Equations Associated with Complex, Double, and Dual Numbers”, Russ Math., 67:7 (2023), 34