Abstract:
We consider mixed problem for one-dimensional hyperbolic system of thermal conductivity equations. We construct a class of boundary controls that provide given distribution on phase vector $(T,q)$ in a given moment of time. From this class we choose a control by the Lagrange method that minimize a square functional of loss.
Keywords:
hyperbolic conductivity, boundary phase vector control, reduction of boundary control to starting one, Riemann matrices of first and second kind.
Citation:
R. K. Romanovskii, Yu. A. Medvedev, “Optimal two-sided boundary control of heat transmission in a rod. Hyperbolic model”, Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 6, 54–60; Russian Math. (Iz. VUZ), 60:6 (2016), 45–51
This publication is cited in the following 4 articles:
A. N. Mironov, E. F. Koskova, “O zadache s usloviyami na kharakteristikakh i svobodnoi poverkhnosti dlya giperbolicheskoi sistemy uravnenii s tremya nezavisimymi peremennymi s dvukratnymi kharakteristikami”, Izv. vuzov. Matem., 2025, no. 1, 28–36
A. N. Mironov, A. P. Volkov, “On the Darboux problem for a hyperbolic system of equations with multiple characteristics”, Russian Math. (Iz. VUZ), 66:8 (2022), 31–36
A. N. Mironov, L. B. Mironova, Yu. O. Yakovleva, “Metod Rimana dlya uravnenii s dominiruyuschei chastnoi proizvodnoi (obzor)”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 25:2 (2021), 207–240
L. B. Mironova, “Application of Riemann method to one system in three-dimensional space”, Russian Math. (Iz. VUZ), 63:6 (2019), 42–50