Abstract:
For a system of three equations of the second order we prove existence and uniqueness of solutions to the Cauchy problem and to problem with conditions on characteristics and a free surface. We construct solutions to these problems in terms of the Riemann matrix.
Citation:
L. B. Mironova, “Application of Riemann method to one system in three-dimensional space”, Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 6, 48–57; Russian Math. (Iz. VUZ), 63:6 (2019), 42–50
\Bibitem{Mir19}
\by L.~B.~Mironova
\paper Application of Riemann method to one system in three-dimensional space
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2019
\issue 6
\pages 48--57
\mathnet{http://mi.mathnet.ru/ivm9472}
\crossref{https://doi.org/10.26907/0021-3446-2019-6-48-57}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2019
\vol 63
\issue 6
\pages 42--50
\crossref{https://doi.org/10.3103/S1066369X19060057}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000480734600005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85070680844}
Linking options:
https://www.mathnet.ru/eng/ivm9472
https://www.mathnet.ru/eng/ivm/y2019/i6/p48
This publication is cited in the following 3 articles:
E. A. Sozontova, “Usloviya suschestvovaniya i edinstvennosti resheniya zadachi Gursa dlya sistemy uravnenii s dominiruyuschimi chastnymi proizvodnymi”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 27:2 (2023), 375–383
A. N. Mironov, L. B. Mironova, Yu. O. Yakovleva, “Metod Rimana dlya uravnenii s dominiruyuschei chastnoi proizvodnoi (obzor)”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 25:2 (2021), 207–240
A. N. Mironov, L. B. Mironova, “Riemann-Hadamard method for one system in three-dimensional space”, Differ. Equ., 57:8 (2021), 1034–1041