Loading [MathJax]/jax/output/SVG/config.js
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 1976, Number 1, Pages 75–86 (Mi ivm6100)  

This article is cited in 8 scientific papers (total in 8 papers)

Distribution of the discrete spectrum of singular differential operators

G. V. Rozenblum
Full-text PDF (722 kB) Citations (8)
Received: 16.05.1972
Bibliographic databases:
Language: Russian
Citation: G. V. Rozenblum, “Distribution of the discrete spectrum of singular differential operators”, Izv. Vyssh. Uchebn. Zaved. Mat., 1976, no. 1, 75–86; Soviet Math. (Iz. VUZ), 20:1 (1976), 63–71
Citation in format AMSBIB
\Bibitem{Roz76}
\by G.~V.~Rozenblum
\paper Distribution of the discrete spectrum of singular differential operators
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 1976
\issue 1
\pages 75--86
\mathnet{http://mi.mathnet.ru/ivm6100}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=430557}
\zmath{https://zbmath.org/?q=an:0342.35045}
\transl
\jour Soviet Math. (Iz. VUZ)
\yr 1976
\vol 20
\issue 1
\pages 63--71
Linking options:
  • https://www.mathnet.ru/eng/ivm6100
  • https://www.mathnet.ru/eng/ivm/y1976/i1/p75
  • This publication is cited in the following 8 articles:
    1. E. L. Korotyaev, V. A. Sloushch, “Asymptotics and estimates for the discrete spectrum of the Schrödinger operator on a discrete periodic graph”, St. Petersburg Math. J., 32:1 (2021), 9–29  mathnet  crossref  isi  elib
    2. St. Petersburg Math. J., 30:3 (2019), 573–589  mathnet  crossref  mathscinet  isi  elib
    3. M. S. Agranovich, G. V. Rozenblum, “Spectral boundary problems for Dirac systems with a singular potential”, St. Petersburg Math. J., 16:1 (2005), 25–57  mathnet  crossref  mathscinet  zmath
    4. A. Laptev, “The Negative Spectrum of a Class of Two-Dimensional Schrödinger Operators with Potentials Depending Only on Radius”, Funct. Anal. Appl., 34:4 (2000), 305–307  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    5. R. V. Guseinov, “Spectrum of quasielliptic differential operators”, Math. Notes, 53:6 (1993), 661–663  mathnet  crossref  mathscinet  zmath  isi  elib
    6. Yu. V. Egorov, V. A. Kondrat'ev, “On the negative spectrum of an elliptic operator”, Math. USSR-Sb., 69:1 (1991), 155–177  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    7. V. Ya. Ivrii, S. I. Fedorova, “Dilatation and the asymptotics of the eigenvalues of spectral problems with singularities”, Funct. Anal. Appl., 20:4 (1986), 277–281  mathnet  crossref  mathscinet  zmath  isi
    8. M. Z. Solomyak, “Asymptotics of the spectrum of the Schrödinger operator with nonregular homogeneous potential”, Math. USSR-Sb., 55:1 (1986), 19–37  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:669
    Full-text PDF :312
    References:2
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025