Abstract:
Formulas are proved for the spectral asymptotics of a multidimensional Schrödinger operator with potential which behaves nonregularly at infinity.
Bibliography: 17 titles.
Citation:
M. Z. Solomyak, “Asymptotics of the spectrum of the Schrödinger operator with nonregular homogeneous potential”, Math. USSR-Sb., 55:1 (1986), 19–37
\Bibitem{Sol85}
\by M.~Z.~Solomyak
\paper Asymptotics of the spectrum of the Schr\"odinger operator with nonregular homogeneous potential
\jour Math. USSR-Sb.
\yr 1986
\vol 55
\issue 1
\pages 19--37
\mathnet{http://mi.mathnet.ru/eng/sm1955}
\crossref{https://doi.org/10.1070/SM1986v055n01ABEH002989}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=791315}
\zmath{https://zbmath.org/?q=an:0657.35099|0583.35083}
Linking options:
https://www.mathnet.ru/eng/sm1955
https://doi.org/10.1070/SM1986v055n01ABEH002989
https://www.mathnet.ru/eng/sm/v169/i1/p21
This publication is cited in the following 16 articles:
Özlem Bakşi, “Asymptotic behaviour of negative eigenvalues of an operator differential equation”, Filomat, 36:7 (2022), 2411
G. V. Rozenblum, “On the mathematical papers of Mikhail Zakharovich Solomyak”, St. Petersburg Math. J., 30:3 (2019), 391–410
Ilyas Hashimoglu, “An evaluation of powers of the negative spectrum of Schrödinger operator equation with a singularity at zero”, Bound Value Probl, 2017:1 (2017)
Ilyas Hashimoglu, “Asymptotics of the number of eigenvalues of one-term second-order operator equations”, Adv Differ Equ, 2015:1 (2015)
Françoise Truc, 186, Methods of Spectral Analysis in Mathematical Physics, 2009, 403
V. L. Kreptogorskii, “Interpolation of Rational Approximation Spaces Belonging to the Besov Class”, Math. Notes, 77:6 (2005), 809–816
M. Boyarchenko, S. Levendorskii, “Generalizations of the classical Weyl and Colin de Verdiere's formulas and the orbit method”, Proceedings of the National Academy of Sciences, 102:16 (2005), 5663
Zhongwei Shen, “Eigenvalue asymptotics and exponential decay of eigenfunctions for Schrödinger operators with magnetic fields”, Trans. Amer. Math. Soc., 348:11 (1996), 4465
V. L. Kreptogorskii, “Interpolation in Lizorkin–Triebel and Besov spaces”, Russian Acad. Sci. Sb. Math., 82:2 (1995), 315–326
A. I. Karol', “Complex powers of the Schrödinger operator with a homogeneous, degenerate potential”, Russian Acad. Sci. Sb. Math., 75:1 (1993), 61–83
Kazuya Tachizawa, “Asymptotic distribution of eigenvalues of Schrödinger operators with nonclassical potentials”, Tohoku Math. J. (2), 42:3 (1990)
Raikov G., “Spectral Asymptotics for the Schrodinger Operator with Potential Which Steadies at Infinity”, Commun. Math. Phys., 124:4 (1989), 665–685
S. Z. Levendorskii, “Non-classical spectral asymptotics”, Russian Math. Surveys, 43:1 (1988), 149–192
Levendorskii S., “On the Generalizations of the Weyl Formula for Degenerate Operators”, 293, no. 6, 1987, 1297–1301