Loading [MathJax]/jax/output/SVG/config.js
Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2013, Volume 125, Pages 3–251 (Mi into147)  

This article is cited in 37 scientific papers (total in 37 papers)

Variety of integrable cases in dynamics of low- and multi-dimensional rigid bodies in nonconservative force fields

M. V. Shamolin

Lomonosov Moscow State University, Institute of Mechanics
Abstract: This paper is a survey of integrable cases in dynamics of two-, three-, and four-dimensional rigid bodies under the action of a nonconservative force field. We review both new results and results obtained earlier. Problems examined are described by dynamical systems with so-called variable dissipation with zero mean.
Funding agency Grant number
Russian Foundation for Basic Research 12-01-00020_а
English version:
Journal of Mathematical Sciences (New York), 2015, Volume 204, Issue 4, Pages 379–530
DOI: https://doi.org/10.1007/s10958-014-2209-0
Document Type: Article
UDC: 517.9+531.01+531.552
Language: Russian
Citation: M. V. Shamolin, “Variety of integrable cases in dynamics of low- and multi-dimensional rigid bodies in nonconservative force fields”, Dynamical systems, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 125, VINITI, Moscow, 2013, 3–251; J. Math. Sci. (N. Y.), 204:4 (2015), 379–530
Citation in format AMSBIB
\Bibitem{Sha13}
\by M.~V.~Shamolin
\paper Variety of integrable cases in dynamics of low- and multi-dimensional rigid bodies in nonconservative force fields
\inbook Dynamical systems
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2013
\vol 125
\pages 3--251
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into147}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2015
\vol 204
\issue 4
\pages 379--530
\crossref{https://doi.org/10.1007/s10958-014-2209-0}
Linking options:
  • https://www.mathnet.ru/eng/into147
  • https://www.mathnet.ru/eng/into/v125/p3
  • This publication is cited in the following 37 articles:
    1. M. V. Shamolin, “Examples of Ninth-Order Integrable Dynamic Systems with Dissipation”, J Math Sci, 2025  crossref
    2. M. V. Shamolin, “Examples of Integrable Equations of Motion of a Five-Dimensional Rigid Body in the Presence of Internal and External Force Fields”, J Math Sci, 2025  crossref
    3. Maxim V. Shamolin, “On Integrability of Certain Classes of Variable Dissipation Systems”, PROOF, 4 (2024), 75  crossref
    4. M. V. Shamolin, “Integriruemye dinamicheskie sistemy nechetnogo poryadka s dissipatsiei raznogo znaka”, Tr. sem. im. I. G. Petrovskogo, 33, Izdatelstvo Moskovskogo universiteta, M., 2023, 424–464  mathnet
    5. Maxim V. Shamolin, “Qualitative and Numerical Research of Body Motion in a Resisting Medium”, WSEAS TRANSACTIONS ON SYSTEMS, 20 (2021), 232  crossref
    6. Maxim V. Shamolin, “Cases of Integrability Which Correspond to the Motion of a Pendulum in the Three-dimensional Space”, WSEAS TRANSACTIONS ON APPLIED AND THEORETICAL MECHANICS, 16 (2021), 73  crossref
    7. Maxim V. Shamolin, “Spatial motion of a pendulum in a jet flow: qualitative aspects and integrability”, Proc Appl Math and Mech, 20:1 (2021)  crossref
    8. M. V. Shamolin, “Sistemy s dissipatsiei: otnositelnaya grubost, negrubost razlichnykh stepenei i integriruemost”, Geometriya i mekhanika, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 174, VINITI RAN, M., 2020, 70–82  mathnet  crossref  mathscinet
    9. M. V. Shamolin, “Sluchai integriruemykh dinamicheskikh sistem devyatogo poryadka s dissipatsiei”, Geometriya i mekhanika, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 187, VINITI RAN, M., 2020, 68–81  mathnet  crossref  mathscinet
    10. M. V. Shamolin, “Sluchai integriruemosti uravnenii dvizheniya pyatimernogo tverdogo tela pri nalichii vnutrennego i vneshnego silovykh polei”, Geometriya i mekhanika, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 187, VINITI RAN, M., 2020, 82–118  mathnet  crossref  mathscinet
    11. M. V. Shamolin, “Nekotorye integriruemye dinamicheskie sistemy nechetnogo poryadka s dissipatsiei”, Geometriya i mekhanika, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 174, VINITI RAN, M., 2020, 52–69  mathnet  crossref  mathscinet
    12. M. V. Shamolin, “Family of phase portraits in the spatial dynamics of a rigid body interacting with a resisting medium”, J. Appl. Industr. Math., 13:2 (2019), 327–339  mathnet  crossref  crossref  elib
    13. M. V. Shamolin, “New Cases of Integrable Fifth-Order Systems with Dissipation”, Dokl. Phys., 64:4 (2019), 189  crossref
    14. M. V. Shamolin, “Integrable Third and Fifth Order Dynamical Systems with Dissipation”, J Math Sci, 239:3 (2019), 412  crossref
    15. M. V. Shamolin, “New Cases of Integrable Seventh-Order Systems with Dissipation”, Dokl. Phys., 64:8 (2019), 330  crossref
    16. M. V. Shamolin, “Relative Structural Stability and Instability of Different Degrees in Systems with Dissipation”, J Math Sci, 239:3 (2019), 424  crossref
    17. M. V. Shamolin, “A new case of an integrable system with dissipation on the tangent bundle of a multidimensional sphere”, Moscow University Mechanics Bulletin, 73:3 (2018), 51–59  mathnet  crossref  zmath  isi
    18. M. V. Shamolin, “O dvizhenii mayatnika v mnogomernom prostranstve. Chast 3. Zavisimost polya sil ot tenzora uglovoi skorosti”, Vestn. SamU. Estestvennonauchn. ser., 24:2 (2018), 33–54  mathnet  crossref  elib
    19. M. V. Shamolin, “Examples of Integrable Systems with Dissipation on the Tangent Bundles of Multidimensional Spheres”, J. Math. Sci. (N. Y.), 250:6 (2020), 932–941  mathnet  crossref  mathscinet
    20. M. V. Shamolin, “Examples of Integrable Systems with Dissipation on the Tangent Bundles of Three-Dimensional Manifolds”, J. Math. Sci. (N. Y.), 250:6 (2020), 964–972  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:376
    Full-text PDF :171
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025