Loading [MathJax]/jax/output/SVG/config.js
Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki. Noveishie Dostizheniya"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki. Noveishie Dostizheniya", 1984, Volume 25, Pages 3–49 (Mi intd74)  

This article is cited in 20 scientific papers (total in 20 papers)

Lie superalgebras

D. A. Leites
Abstract: Results pertaining to the theory of representations of classical Lie superalgebras are collected in the survey.
English version:
Journal of Soviet Mathematics, 1985, Volume 30, Issue 6, Pages 2481–2512
DOI: https://doi.org/10.1007/BF02249121
Bibliographic databases:
UDC: 512.554
Language: Russian
Citation: D. A. Leites, “Lie superalgebras”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 25, VINITI, Moscow, 1984, 3–49; J. Soviet Math., 30:6 (1985), 2481–2512
Citation in format AMSBIB
\Bibitem{Lei84}
\by D.~A.~Leites
\paper Lie superalgebras
\serial Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh.
\yr 1984
\vol 25
\pages 3--49
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/intd74}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=770940}
\zmath{https://zbmath.org/?q=an:0567.17003}
\transl
\jour J. Soviet Math.
\yr 1985
\vol 30
\issue 6
\pages 2481--2512
\crossref{https://doi.org/10.1007/BF02249121}
Linking options:
  • https://www.mathnet.ru/eng/intd74
  • https://www.mathnet.ru/eng/intd/v25/p3
  • This publication is cited in the following 20 articles:
    1. Anatolij K. Prykarpatski, Radosław A. Kycia, Volodymyr M. Dilnyi, “On Superization of Nonlinear Integrable Dynamical Systems”, Symmetry, 17:1 (2025), 125  crossref
    2. Anatolij K. Prykarpatski, Volodymyr M. Dilnyi, Petro Ya. Pukach, Myroslava I. Vovk, “Supersymmetric Integrable Hamiltonian Systems, Conformal Lie Superalgebras K(1, N = 1, 2, 3), and Their Factorized Semi-Supersymmetric Generalizations”, Symmetry, 16:11 (2024), 1441  crossref
    3. Ezra Getzler, Sean Pohorence, Proceedings of Symposia in Pure Mathematics, 103.2, Integrability, Quantization, and Geometry, 2021, 257  crossref
    4. Sofiane Bouarroudj, Dimitry Leites, Olexander Lozhechnyk, Jin Shang, “The Roots of Exceptional Modular Lie Superalgebras with Cartan Matrix”, Arnold Math J., 6:1 (2020), 63  crossref
    5. A. V. Kiselev, A. O. Krutov, “Gardner's deformations of the graded Korteweg–de Vries equations revisited”, Journal of Mathematical Physics, 53:10 (2012)  crossref
    6. S. Bouarroudj, P. Ya. Grozman, D. A. Leites, “New Simple Modular Lie Superalgebras as Generalized Prolongs”, Funct. Anal. Appl., 42:3 (2008), 161–168  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    7. D. A. Leites, I. M. Shchepochkina, “How to Quantize the Antibracket”, Theoret. and Math. Phys., 126:3 (2001), 281–306  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    8. Yuri Bahturin, Alexander A. Mikhalev, Mikhail Zaicev, Handbook of Algebra, 2, 2000, 579  crossref
    9. I. M. Shchepochkina, “Five Exceptional Simple Lie Superalgebras of Vector Fields”, Funct. Anal. Appl., 33:3 (1999), 208–219  mathnet  crossref  crossref  mathscinet  zmath  isi
    10. Alexander Sergeev, “The invariant polynomials on simple Lie superalgebras”, Represent. Theory, 3:10 (1999), 250  crossref
    11. Irina Shchepochkina, “The five exceptional simple Lie superalgebras of vector fields and their fourteen regradings”, Represent. Theory, 3:13 (1999), 373  crossref
    12. Alexander Sergeev, “The Howe duality and the projective representations of symmetric groups”, Represent. Theory, 3:14 (1999), 416  crossref
    13. D. V. Yur'ev, “Topics in isotopic pairs and their representations. II. A general supercase”, Theoret. and Math. Phys., 111:1 (1997), 511–518  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    14. D. V. Yur'ev, “Complex projective geometry and quantum projective field theory”, Theoret. and Math. Phys., 101:3 (1994), 1387–1403  mathnet  crossref  mathscinet  zmath  isi
    15. D. Leites, NATO ASI Series, 245, Differential Geometric Methods in Theoretical Physics, 1990, 633  crossref
    16. Johan W. Van De Leur, “A classification of contragredient lie superalgebras of finite growth”, Communications in Algebra, 17:8 (1989), 1815  crossref
    17. Ch. D. Palev, “Irreducible finite-dimensional representations of lie superalgebras $gl(n,1)$ in the Gel'fand–Tsetlin basis”, Funct. Anal. Appl., 21:3 (1987), 245–246  mathnet  crossref  mathscinet  zmath  isi
    18. Kaoru Ikeda, “A supersymmetric extension of the Toda lattice hierarchy”, Lett Math Phys, 14:4 (1987), 321  crossref
    19. I. B. Penkov, “Characters of typical irreducible finite-dimensional $\mathfrak{q}(n)$-modules”, Funct. Anal. Appl., 20:1 (1986), 30–37  mathnet  crossref  mathscinet  zmath  isi
    20. G. L. Litvinov, “Hypergroups and hypergroup algebras”, J. Soviet Math., 38:2 (1987), 1734–1761  mathnet  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:761
    Full-text PDF :485
    References:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025