This publication is cited in the following 23 articles:
Mark D Gould, Phillip S Isaac, “Reduced matrix elements of the orthosymplectic Lie superalgebra”, J. Phys. A: Math. Theor., 48:2 (2015), 025201
Phillip S Isaac, Jason L Werry, Mark D Gould, “Characteristic identities for Lie (super)algebras”, J. Phys.: Conf. Ser., 597 (2015), 012045
N I Stoilova, J Van der Jeugt, “A class of infinite-dimensional representations of the Lie superalgebra osp(2m+1|2n) and the parastatistics Fock space”, J. Phys. A: Math. Theor., 48:15 (2015), 155202
Mark D. Gould, Phillip S. Isaac, Jason L. Werry, “Matrix elements for type 1 unitary irreducible representations of the Lie superalgebra gl(m|n)”, Journal of Mathematical Physics, 55:1 (2014)
Mark D. Gould, Phillip S. Isaac, Jason L. Werry, “Invariants and reduced matrix elements associated with the Lie superalgebra gl(m|n)”, Journal of Mathematical Physics, 54:1 (2013)
N. I. Stoilova, J. Van der Jeugt, “Gel'fand–Zetlin basis and Clebsch–Gordan coefficients for covariant representations of the Lie superalgebra gl(m∣n)”, Journal of Mathematical Physics, 51:9 (2010)
T Palev, J Van der Jeugt, “Fock representations of the Lie superalgebraq(n+1)”, J. Phys. A: Math. Gen., 33:13 (2000), 2527
T. D. Palev, N. I. Stoilova, “Highest weight irreducible representations of the Lie superalgebra gl(1|∞)”, Journal of Mathematical Physics, 40:3 (1999), 1574
T. D. PALEV, “A GENERALIZATION OF THE HOLSTEIN–PRIMAKOFF AND THE DYSON EXPANSIONS FOR THE QUANTUM SUPERALGEBRA Uq [gl(n/m)]”, Mod. Phys. Lett. A, 14:04 (1999), 299
T. D. Palev, N. I. Stoilova, “Many-body Wigner quantum systems”, Journal of Mathematical Physics, 38:5 (1997), 2506
B Abdesselam, D Arnaudon, A Chakrabarti, “Representations of Uq(sl(N)) at roots of unity”, J. Phys. A: Math. Gen., 28:19 (1995), 5495
Nguyen Anh Ky, Nedialka I. Stoilova, “Finite-dimensional representations of the quantum superalgebra Uq[gl(2/2)]. II. Nontypical representations at generic q”, Journal of Mathematical Physics, 36:10 (1995), 5979
T D Palev, N I Stoilova, “Wigner quantum oscillators”, J. Phys. A: Math. Gen., 27:3 (1994), 977
Tchavdar D. Palev, Nedjalka I. Stoilova, Symmetries in Science VI, 1993, 593
Nguyen Anh Ky, Tchavdar D. Palev, “Transformations of some induced osp(3/2) modules in an so(3)⊕sp(2) basis”, Journal of Mathematical Physics, 33:5 (1992), 1841
T. D. Palev, V. N. Tolstoy, “Finite-dimensional irreducible representations of the quantum superalgebraU q [gl(n/1)]”, Commun.Math. Phys., 141:3 (1991), 549
T.D. Palev, V. N. Tolstoy, Lecture Notes in Physics, 382, Group Theoretical Methods in Physics, 1991, 177
Tchavdar D. Palev, Nedjalka I. Stoilova, “Finite-dimensional representations of the Lie superalgebra gl(2/2) in a gl(2)⊕gl(2) basis. II. Nontypical representations”, Journal of Mathematical Physics, 31:4 (1990), 953
M. D. Gould, P. D. Jarvis, A. J. Bracken, “Branching rules for a class of typical and atypical representations of gl(m‖n)”, Journal of Mathematical Physics, 31:12 (1990), 2803
Ch. D. Palev, “Essentially typical representations of Lie superalgebras gl(n|m) in the Gel'fand-Tsetlin basis”, Funct. Anal. Appl., 23:2 (1989), 141–142