Processing math: 100%
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 1987, Volume 21, Issue 3, Pages 85–86 (Mi faa1220)  

This article is cited in 23 scientific papers (total in 23 papers)

Brief communications

Irreducible finite-dimensional representations of lie superalgebras gl(n,1) in the Gel'fand–Tsetlin basis

Ch. D. Palev
References:
Received: 18.12.1986
English version:
Functional Analysis and Its Applications, 1987, Volume 21, Issue 3, Pages 245–246
DOI: https://doi.org/10.1007/BF02577145
Bibliographic databases:
Document Type: Article
UDC: 519.46
Language: Russian
Citation: Ch. D. Palev, “Irreducible finite-dimensional representations of lie superalgebras gl(n,1) in the Gel'fand–Tsetlin basis”, Funktsional. Anal. i Prilozhen., 21:3 (1987), 85–86; Funct. Anal. Appl., 21:3 (1987), 245–246
Citation in format AMSBIB
\Bibitem{Pal87}
\by Ch.~D.~Palev
\paper Irreducible finite-dimensional representations of lie superalgebras $gl(n,1)$ in the Gel'fand--Tsetlin basis
\jour Funktsional. Anal. i Prilozhen.
\yr 1987
\vol 21
\issue 3
\pages 85--86
\mathnet{http://mi.mathnet.ru/faa1220}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=911783}
\zmath{https://zbmath.org/?q=an:0646.17010}
\transl
\jour Funct. Anal. Appl.
\yr 1987
\vol 21
\issue 3
\pages 245--246
\crossref{https://doi.org/10.1007/BF02577145}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1987M671500014}
Linking options:
  • https://www.mathnet.ru/eng/faa1220
  • https://www.mathnet.ru/eng/faa/v21/i3/p85
  • This publication is cited in the following 23 articles:
    1. Mark D Gould, Phillip S Isaac, “Reduced matrix elements of the orthosymplectic Lie superalgebra”, J. Phys. A: Math. Theor., 48:2 (2015), 025201  crossref
    2. Phillip S Isaac, Jason L Werry, Mark D Gould, “Characteristic identities for Lie (super)algebras”, J. Phys.: Conf. Ser., 597 (2015), 012045  crossref
    3. N I Stoilova, J Van der Jeugt, “A class of infinite-dimensional representations of the Lie superalgebra osp(2m+1|2n) and the parastatistics Fock space”, J. Phys. A: Math. Theor., 48:15 (2015), 155202  crossref
    4. Mark D. Gould, Phillip S. Isaac, Jason L. Werry, “Matrix elements for type 1 unitary irreducible representations of the Lie superalgebra gl(m|n)”, Journal of Mathematical Physics, 55:1 (2014)  crossref
    5. Mark D. Gould, Phillip S. Isaac, Jason L. Werry, “Invariants and reduced matrix elements associated with the Lie superalgebra gl(m|n)”, Journal of Mathematical Physics, 54:1 (2013)  crossref
    6. N. I. Stoilova, J. Van der Jeugt, “Gel'fand–Zetlin basis and Clebsch–Gordan coefficients for covariant representations of the Lie superalgebra gl(m∣n)”, Journal of Mathematical Physics, 51:9 (2010)  crossref
    7. T Palev, J Van der Jeugt, “Fock representations of the Lie superalgebraq(n+1)”, J. Phys. A: Math. Gen., 33:13 (2000), 2527  crossref
    8. T. D. Palev, N. I. Stoilova, “Highest weight irreducible representations of the Lie superalgebra gl(1|∞)”, Journal of Mathematical Physics, 40:3 (1999), 1574  crossref
    9. T. D. PALEV, “A GENERALIZATION OF THE HOLSTEIN–PRIMAKOFF AND THE DYSON EXPANSIONS FOR THE QUANTUM SUPERALGEBRA Uq [gl(n/m)]”, Mod. Phys. Lett. A, 14:04 (1999), 299  crossref
    10. T. D. Palev, N. I. Stoilova, “Many-body Wigner quantum systems”, Journal of Mathematical Physics, 38:5 (1997), 2506  crossref
    11. B Abdesselam, D Arnaudon, A Chakrabarti, “Representations of Uq(sl(N)) at roots of unity”, J. Phys. A: Math. Gen., 28:19 (1995), 5495  crossref
    12. Nguyen Anh Ky, Nedialka I. Stoilova, “Finite-dimensional representations of the quantum superalgebra Uq[gl(2/2)]. II. Nontypical representations at generic q”, Journal of Mathematical Physics, 36:10 (1995), 5979  crossref
    13. T D Palev, N I Stoilova, “Wigner quantum oscillators”, J. Phys. A: Math. Gen., 27:3 (1994), 977  crossref
    14. Tchavdar D. Palev, Nedjalka I. Stoilova, Symmetries in Science VI, 1993, 593  crossref
    15. Nguyen Anh Ky, Tchavdar D. Palev, “Transformations of some induced osp(3/2) modules in an so(3)⊕sp(2) basis”, Journal of Mathematical Physics, 33:5 (1992), 1841  crossref
    16. T. D. Palev, V. N. Tolstoy, “Finite-dimensional irreducible representations of the quantum superalgebraU q [gl(n/1)]”, Commun.Math. Phys., 141:3 (1991), 549  crossref
    17. T.D. Palev, V. N. Tolstoy, Lecture Notes in Physics, 382, Group Theoretical Methods in Physics, 1991, 177  crossref
    18. Tchavdar D. Palev, Nedjalka I. Stoilova, “Finite-dimensional representations of the Lie superalgebra gl(2/2) in a gl(2)⊕gl(2) basis. II. Nontypical representations”, Journal of Mathematical Physics, 31:4 (1990), 953  crossref
    19. M. D. Gould, P. D. Jarvis, A. J. Bracken, “Branching rules for a class of typical and atypical representations of gl(m‖n)”, Journal of Mathematical Physics, 31:12 (1990), 2803  crossref
    20. Ch. D. Palev, “Essentially typical representations of Lie superalgebras gl(n|m) in the Gel'fand-Tsetlin basis”, Funct. Anal. Appl., 23:2 (1989), 141–142  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:344
    Full-text PDF :83
    References:44
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025