Abstract:
We study the qualitative dynamics of weak solutions in the non-autonomous
model of motion of dilute aqueous polymer solutions using the theory
of pullback attractors of trajectory spaces. We establish the existence
of weak solutions for this model, define a family of trajectory spaces,
introduce the notions of a trajectory pullback attractor and a minimal
pullback attractor and prove the existence of these attractors.
This paper was written with the financial support of RFBR (grant no. 13-01-00041), the Russian Science Foundation (project no. 14-21-00066), and the Ministry of Science and Education of Russia in the sphere of scientific activity in 2014–2016 (project no. 1.1539.2014/K).
Citation:
V. G. Zvyagin, S. K. Kondrat'ev, “Pullback attractors for the model of motion of dilute aqueous polymer solutions”, Izv. Math., 79:4 (2015), 645–667
\Bibitem{ZvyKon15}
\by V.~G.~Zvyagin, S.~K.~Kondrat'ev
\paper Pullback attractors for the model of motion of dilute aqueous polymer solutions
\jour Izv. Math.
\yr 2015
\vol 79
\issue 4
\pages 645--667
\mathnet{http://mi.mathnet.ru/eng/im8163}
\crossref{https://doi.org/10.1070/IM2015v079n04ABEH002756}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3397417}
\zmath{https://zbmath.org/?q=an:1327.35043}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015IzMat..79..645Z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000360463600001}
\elib{https://elibrary.ru/item.asp?id=24073701}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84940567355}
Linking options:
https://www.mathnet.ru/eng/im8163
https://doi.org/10.1070/IM2015v079n04ABEH002756
https://www.mathnet.ru/eng/im/v79/i4/p3
This publication is cited in the following 7 articles:
A. Zvyagin, “Attractors for model of polymer solutions motion”, Discret. Contin. Dyn. Syst., 38:12, SI (2018), 6305–6325
V. V. Nikulin, “Degenerations of Kählerian K3 surfaces with finite symplectic automorphism groups. III”, Izv. Math., 81:5 (2017), 985–1029
A. V. Zvyagin, V. G. Zvyagin, “Pullback attractors for a model of weakly concentrated aqueous polymer solution motion with a rheological relation satisfying the objectivity principle”, Dokl. Math., 95:3 (2017), 247–249
A.V. Zvyagin, V.G. Zvyagin, “PULLBACK-ATTRAKTORY MODELI DVIZhENIYa SLABO KONTsENTRIROVANNYKh VODNYKh RASTVOROV POLIMEROV S REOLOGIChESKIM SOOTNOShENIEM, UDOVLETVORYaYuSchIM PRINTsIPU OB'EKTIVNOSTI, “Doklady Akademii nauk””, Doklady Akademii Nauk, 2017, no. 5, 531
V. Zvyagin, S. Kondratyev, “Attractors of the Jeffreys-Oldroyd equations”, J. Differential Equations, 260:6 (2016), 5026–5042
A. V. Zvyagin, D. M. Polyakov, “On the solvability of the Jeffreys–Oldroyd- model”, Differ. Equ., 52:6 (2016), 761–766
V. G. Zvyagin, A. V. Zvyagin, “Pullback attractors for a model of polymer solutions motion with rheological relation satisfying the objectivity principle”, J. Math. Sci., 248:5 (2020), 600–620