Loading [MathJax]/jax/output/CommonHTML/jax.js
Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2017, Volume 81, Issue 5, Pages 985–1029
DOI: https://doi.org/10.1070/IM8629
(Mi im8629)
 

This article is cited in 4 scientific papers (total in 4 papers)

Degenerations of Kählerian K3 surfaces with finite symplectic automorphism groups. III

V. V. Nikulinab

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b Department of Mathematical Sciences, University of Liverpool, Liverpool, UK
References:
Abstract: Following our papers [1] and [2] (Parts I and II), we classify degenerations of codimension 2 or more of Kählerian K3 surfaces with finite symplectic automorphism groups. In [1] and [2] this was done for codimension 1.
Keywords: K3 surface, Kählerian surface, automorphism group, degeneration, singularities, Picard lattice, integral symmetric bilinear form.
Funding agency Grant number
Russian Science Foundation 14-50-00005
This work is supported by the Russian Science Foundation under grant 14-50-00005.
Received: 18.11.2016
Bibliographic databases:
Document Type: Article
UDC: 512.774.4+512.774.2+512.542+512.647.4
PACS: 14J10, 14J28, 14J50
MSC: 14J10, 14J28, 14J50
Language: English
Original paper language: Russian
Citation: V. V. Nikulin, “Degenerations of Kählerian K3 surfaces with finite symplectic automorphism groups. III”, Izv. Math., 81:5 (2017), 985–1029
Citation in format AMSBIB
\Bibitem{Nik17}
\by V.~V.~Nikulin
\paper Degenerations of K\"ahlerian K3 surfaces with finite symplectic automorphism groups.~III
\jour Izv. Math.
\yr 2017
\vol 81
\issue 5
\pages 985--1029
\mathnet{http://mi.mathnet.ru/eng/im8629}
\crossref{https://doi.org/10.1070/IM8629}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3706862}
\zmath{https://zbmath.org/?q=an:1386.14140}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017IzMat..81..985N}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000416408800004}
\elib{https://elibrary.ru/item.asp?id=30512280}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85041005363}
Linking options:
  • https://www.mathnet.ru/eng/im8629
  • https://doi.org/10.1070/IM8629
  • https://www.mathnet.ru/eng/im/v81/i5/p105
  • This publication is cited in the following 4 articles:
    1. Viacheslav V. Nikulin, “Classification of Degenerations of Codimension 5 and Their Picard Lattices for Kählerian K3 Surfaces with the Symplectic Automorphism Group (C2)2”, Proc. Steklov Inst. Math., 320 (2023), 172–225  mathnet  crossref  crossref  mathscinet
    2. V. V. Nikulin, “Classification of degenerations and Picard lattices of Kählerian K3 surfaces with symplectic automorphism group D6”, Izv. Math., 83:6 (2019), 1201–1233  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. Viacheslav V. Nikulin, “Classification of Degenerations and Picard Lattices of Kählerian K3 Surfaces with Symplectic Automorphism Group C4”, Proc. Steklov Inst. Math., 307 (2019), 130–161  mathnet  crossref  crossref  isi  elib
    4. V. V. Nikulin, “Classification of Picard lattices of K3 surfaces”, Izv. Math., 82:4 (2018), 752–816  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:519
    Russian version PDF:58
    English version PDF:19
    References:63
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025