Loading [MathJax]/jax/output/SVG/config.js
Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2014, Volume 78, Issue 1, Pages 59–89
DOI: https://doi.org/10.1070/IM2014v078n01ABEH002680
(Mi im7962)
 

This article is cited in 12 scientific papers (total in 12 papers)

Explicit and probabilistic constructions of distance graphs with small clique numbers and large chromatic numbers

A. B. Kupavskii

Moscow Institute of Physics and Technology
References:
Abstract: We study distance graphs with exponentially large chromatic numbers and without $k$-cliques, that is, complete subgraphs of size $k$. Explicit constructions of such graphs use vectors in the integer lattice. For a large class of graphs we find a sharp threshold for containing a $k$-clique. This enables us to improve the lower bounds for the maximum of the chromatic numbers of such graphs. We give a new probabilistic approach to the construction of distance graphs without $k$-cliques, and this yields better lower bounds for the maximum of the chromatic numbers for large $k$.
Keywords: distance graph, chromatic number, clique number, Nelson problem.
Received: 08.02.2012
Revised: 12.07.2012
Bibliographic databases:
Document Type: Article
UDC: 519.174.7+519.176+519.175.4
Language: English
Original paper language: Russian
Citation: A. B. Kupavskii, “Explicit and probabilistic constructions of distance graphs with small clique numbers and large chromatic numbers”, Izv. Math., 78:1 (2014), 59–89
Citation in format AMSBIB
\Bibitem{Kup14}
\by A.~B.~Kupavskii
\paper Explicit and probabilistic constructions of distance graphs with small clique numbers and large chromatic numbers
\jour Izv. Math.
\yr 2014
\vol 78
\issue 1
\pages 59--89
\mathnet{http://mi.mathnet.ru/eng/im7962}
\crossref{https://doi.org/10.1070/IM2014v078n01ABEH002680}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3204659}
\zmath{https://zbmath.org/?q=an:1287.05029}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014IzMat..78...59K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000332236500004}
\elib{https://elibrary.ru/item.asp?id=21276260}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84894711516}
Linking options:
  • https://www.mathnet.ru/eng/im7962
  • https://doi.org/10.1070/IM2014v078n01ABEH002680
  • https://www.mathnet.ru/eng/im/v78/i1/p65
  • This publication is cited in the following 12 articles:
    1. Yu. A. Demidovich, M. E. Zhukovskii, “Chromatic Numbers of Distance Graphs without Short Odd Cycles in Rational Spaces”, Math. Notes, 109:5 (2021), 727–734  mathnet  crossref  crossref  isi  elib
    2. R. I. Prosanov, “Counterexamples to Borsuk's Conjecture with Large Girth”, Math. Notes, 105:6 (2019), 874–880  mathnet  crossref  crossref  mathscinet  isi  elib
    3. Yu. A. Demidovich, “Distance Graphs with Large Chromatic Number and without Cliques of Given Size in the Rational Space”, Math. Notes, 106:1 (2019), 38–51  mathnet  crossref  crossref  mathscinet  isi  elib
    4. P. Frankl, A. Kupavskii, “Two problems on matchings in set families - in the footsteps of Erdos and Kleitman”, J. Comb. Theory Ser. B, 138 (2019), 286–313  crossref  mathscinet  isi  scopus
    5. A. Sokolov, “On the Chromatic Numbers of Rational Spaces”, Math. Notes, 103:1-2 (2018), 111–117  mathnet  crossref  crossref  mathscinet  isi  elib
    6. P. Frankl, A. Kupayskii, “Erdös-Ko-Rado theorem for $\{0,\pm 1\}$-vectors”, J. Comb. Theory Ser. A, 155 (2018), 157–179  crossref  mathscinet  zmath  isi  scopus
    7. P. Frankl, “An exact result for $(0,\pm 1)$-vectors”, Optim. Lett., 12:5 (2018), 1011–1017  crossref  mathscinet  zmath  isi  scopus
    8. P. Frankl, A. Kupavskii, “Families of vectors without antipodal pairs”, Stud. Sci. Math. Hung., 55:2 (2018), 231–237  crossref  mathscinet  zmath  isi  scopus
    9. A. V. Berdnikov, “Chromatic numbers of distance graphs with several forbidden distances and without cliques of a given size”, Problems Inform. Transmission, 54:1 (2018), 70–83  mathnet  crossref  isi  elib
    10. A. Sagdeev, “Lower Bounds for the Chromatic Numbers of Distance Graphs with Large Girth”, Math. Notes, 101:3 (2017), 515–528  mathnet  crossref  crossref  mathscinet  isi  elib
    11. A. Sagdeev, “The Chromatic Number of Space with Forbidden Regular Simplex”, Math. Notes, 102:4 (2017), 541–546  mathnet  crossref  crossref  mathscinet  isi  elib
    12. A. M. Raigorodskii, “Cliques and cycles in distance graphs and graphs of diameters”, Discrete Geometry and Algebraic Combinatorics, Contemporary Mathematics, 625, 2014, 93–109  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:605
    Russian version PDF:216
    English version PDF:24
    References:80
    First page:30
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025