Abstract:
For kernels $K$ satisfying the condition $B_{2m}$ introduced by the author, lower bounds are found for the Kolmogorov widths of classes of convolutions $K\ast H^\omega$, $\omega$ convex, in the uniform metric. In a number of cases these bounds are sharp.
Citation:
V. T. Shevaldin, “Lower estimates of the widths of the classes of functions defined by a modulus of continuity”, Russian Acad. Sci. Izv. Math., 45:2 (1995), 399–415
\Bibitem{She94}
\by V.~T.~Shevaldin
\paper Lower estimates of the widths of the classes of functions defined by a modulus of continuity
\jour Russian Acad. Sci. Izv. Math.
\yr 1995
\vol 45
\issue 2
\pages 399--415
\mathnet{http://mi.mathnet.ru/eng/im765}
\crossref{https://doi.org/10.1070/IM1995v045n02ABEH001648}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1307315}
\zmath{https://zbmath.org/?q=an:0847.41018}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995TQ08600008}
Linking options:
https://www.mathnet.ru/eng/im765
https://doi.org/10.1070/IM1995v045n02ABEH001648
https://www.mathnet.ru/eng/im/v58/i5/p172
This publication is cited in the following 3 articles: