Loading [MathJax]/jax/output/SVG/config.js
Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2008, Volume 72, Issue 6, Pages 1063–1110
DOI: https://doi.org/10.1070/IM2008v072n06ABEH002429
(Mi im757)
 

This article is cited in 13 scientific papers (total in 13 papers)

The Hilbert polynomial and linear forms in the logarithms of algebraic numbers

Yu. M. Aleksentsev

Moscow State Institute of Steel and Alloys (Technological University)
References:
Abstract: We prove a new estimate for homogeneous linear forms with integer coefficients in the logarithms of algebraic numbers. We obtain a qualitative improvement of the estimate depending on the coefficients of the linear form and the best value of the constant in the estimate in the case when the number of logarithms is not too large.
Received: 30.01.2006
Bibliographic databases:
UDC: 511.3, 511.364, 511.51, 511.682
MSC: 11J86, 11J25, 11H06
Language: English
Original paper language: Russian
Citation: Yu. M. Aleksentsev, “The Hilbert polynomial and linear forms in the logarithms of algebraic numbers”, Izv. Math., 72:6 (2008), 1063–1110
Citation in format AMSBIB
\Bibitem{Ale08}
\by Yu.~M.~Aleksentsev
\paper The Hilbert polynomial and linear forms in the logarithms of algebraic numbers
\jour Izv. Math.
\yr 2008
\vol 72
\issue 6
\pages 1063--1110
\mathnet{http://mi.mathnet.ru/eng/im757}
\crossref{https://doi.org/10.1070/IM2008v072n06ABEH002429}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2489483}
\zmath{https://zbmath.org/?q=an:05499610}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008IzMat..72.1063A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262990700001}
\elib{https://elibrary.ru/item.asp?id=12143204}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-65349180458}
Linking options:
  • https://www.mathnet.ru/eng/im757
  • https://doi.org/10.1070/IM2008v072n06ABEH002429
  • https://www.mathnet.ru/eng/im/v72/i6/p5
  • This publication is cited in the following 13 articles:
    1. Andrej Dujella, Developments in Mathematics, 79, Diophantine m-tuples and Elliptic Curves, 2024, 167  crossref
    2. Maurice Mignotte, Paul Voutier, “A kit for linear forms in three logarithms”, Math. Comp., 93:348 (2023), 1903  crossref
    3. Rihane S.E., Luca F., Togbe A., “There Are No Diophantine Quadruples of Pell Numbers”, Int. J. Number Theory, 18:01 (2022), 27–45  crossref  mathscinet  isi
    4. Bonciocat N.C., Cipu M., Mignotte M., “There Is No Diophantine D(-1)\$D(-1)$-Quadruple”, J. Lond. Math. Soc.-Second Ser., 105:1 (2022), 63–99  crossref  mathscinet  isi
    5. Cipu M., Filipin A., Fujita Ya., “Diophantine Pairs That Induce Certain Diophantine Triples”, J. Number Theory, 210 (2020), 433–475  crossref  mathscinet  isi
    6. Trebjesanin M.B., Filipin A., “Nonexistence of D(4)-Quintuples”, J. Number Theory, 194 (2019), 170–217  crossref  mathscinet  zmath  isi  scopus
    7. Phulpoto A.H., Ahmed I., Soomro I., Hameed A., Muhammed R., Jokhio I.A., Chohan R., Kalhoro A.N., Phulpoto Sh.N., Jumani A.D., “Some Polynomial Formula of the Diophantine Quadruple With D(N) Property”, Int. J. Comput. Sci. Netw. Secur., 19:4 (2019), 249–251  isi
    8. Ziegler V., “Effective Results For Linear Equations in Members of Two Recurrence Sequences”, Acta Arith., 190:2 (2019), 139–169  crossref  mathscinet  isi  scopus
    9. Bugeaud Y., “Linear Forms in Logarithms and Applications”, Linear Forms in Logarithms and Applications, Irma Lectures in Mathematics and Theoretical Physics, 28, Eur. Math. Soc., 2018, 1–224  crossref  mathscinet  isi
    10. Fujita Ya., Luca F., “There Are No Diophantine Quadruples of Fibonacci Numbers”, Acta Arith., 185:1 (2018), 19–38  crossref  mathscinet  zmath  isi  scopus
    11. Bliznac M., Filipin A., “An Upper Bound For the Number of Diophantine Quintuples”, Bull. Aust. Math. Soc., 94:3 (2016), 384–394  crossref  mathscinet  zmath  isi  elib  scopus
    12. Cipu M., Trudgian T., “Searching for Diophantine quintuples”, Acta Arith., 173:4 (2016), 365–382  crossref  mathscinet  zmath  isi  elib  scopus
    13. Tim Trudgian, “Bounds on the number of Diophantine quintuples”, Journal of Number Theory, 2015  crossref  mathscinet  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:603
    Russian version PDF:216
    English version PDF:38
    References:66
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025