Loading [MathJax]/jax/output/SVG/config.js
Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2005, Volume 69, Issue 4, Pages 805–846
DOI: https://doi.org/10.1070/IM2005v069n04ABEH001665
(Mi im652)
 

This article is cited in 31 scientific papers (total in 31 papers)

Asymptotic expansions of eigenvalues and eigenfunctions of an elliptic operator in a domain with many “light” concentrated masses situated on the boundary. Two-dimensional case

G. A. Chechkin

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We consider vibrations of a membrane which contains many “light” concentrated masses on the boundary. We study the asymptotic behaviour of the frequencies of eigenvibrations of the membrane as the small parameter (which characterizes the diameter and density of the concentrated masses) tends to zero. We construct asymptotic expansions of eigenelements of the corresponding problems and carefully justify these expansions.
Received: 02.06.2004
Bibliographic databases:
UDC: 517.956.226
Language: English
Original paper language: Russian
Citation: G. A. Chechkin, “Asymptotic expansions of eigenvalues and eigenfunctions of an elliptic operator in a domain with many “light” concentrated masses situated on the boundary. Two-dimensional case”, Izv. Math., 69:4 (2005), 805–846
Citation in format AMSBIB
\Bibitem{Che05}
\by G.~A.~Chechkin
\paper Asymptotic expansions of eigenvalues and eigenfunctions of an elliptic operator in a domain with many ``light'' concentrated masses situated on the boundary. Two-dimensional case
\jour Izv. Math.
\yr 2005
\vol 69
\issue 4
\pages 805--846
\mathnet{http://mi.mathnet.ru/eng/im652}
\crossref{https://doi.org/10.1070/IM2005v069n04ABEH001665}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2170707}
\zmath{https://zbmath.org/?q=an:1102.35035}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000233210000008}
\elib{https://elibrary.ru/item.asp?id=9195228}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645521937}
Linking options:
  • https://www.mathnet.ru/eng/im652
  • https://doi.org/10.1070/IM2005v069n04ABEH001665
  • https://www.mathnet.ru/eng/im/v69/i4/p161
  • This publication is cited in the following 31 articles:
    1. D. I. Borisov, A. I. Mukhametrakhimova, “Asymptotics for problems in perforated domains with Robin nonlinear condition on the boundaries of cavities”, Sb. Math., 213:10 (2022), 1318–1371  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. Yuriy Golovaty, “Membranes with thin and heavy inclusions: Asymptotics of spectra”, ASY, 130:1-2 (2022), 23  crossref
    3. Mel'nyk T., “Asymptotic Approximations For Eigenvalues and Eigenfunctions of a Spectral Problem in a Thin Graph-Like Junction With a Concentrated Mass in the Node”, Anal. Appl., 19:05 (2021), 875–939  crossref  mathscinet  isi
    4. Chechkina A.G. D'Apice C. De Maio U., “Operator Estimates For Elliptic Problem With Rapidly Alternating Steklov Boundary Condition”, J. Comput. Appl. Math., 376 (2020), 112802  crossref  mathscinet  isi  scopus
    5. Chechkin G.A., Chechkina T.P., “Random Homogenization in a Domain With Light Concentrated Masses”, Mathematics, 8:5 (2020), 788  crossref  isi
    6. Koroleva Yu., “Spectral Analysis of a Nonlinear Boundary-Value Problem in a Perforated Domain. Applications to the Friedrichs Inequality in Lp”, Diff. Equat. Appl., 8:4 (2016), 437–458  crossref  mathscinet  zmath  isi
    7. Giuseppe Cardone, Andrii Khrabustovskyi, “Neumann spectral problem in a domain with very corrugated boundary”, Journal of Differential Equations, 2015  crossref  mathscinet  scopus
    8. T. A. Mel'nik, G. A. Chechkin, “Eigenvibrations of thick cascade junctions with ‘very heavy’ concentrated masses”, Izv. Math., 79:3 (2015), 467–511  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    9. A. G. Chechkina, V. A. Sadovnichy, “Degeneration of Steklov–type boundary conditions in one spectral homogenization problem”, Eurasian Math. J., 6:3 (2015), 13–29  mathnet
    10. Yulia Koroleva, “On the Convergence of a Nonlinear Boundary-Value Problem in a Perforated Domain”, International Journal of Differential Equations, 2015 (2015), 1  crossref
    11. N. N. Abdullazade, G. A. Chechkin, “Perturbation of the Steklov Problem on a Small Part of the Boundary”, J Math Sci, 2014  crossref  mathscinet  scopus
    12. G.A.. Chechkin, T.A.. Mel'nyk, “High-frequency cell vibrations and spatial skin effect in thick cascade junction with heavy concentrated masses”, Comptes Rendus Mécanique, 2014  crossref  scopus
    13. A. R. Bikmetov, T. R. Gadyl’shin, I. Kh. Khusnullin, “Perturbation by Slender Potential of Operators Associated with Sectorial Forms”, J Math Sci, 2014  crossref  mathscinet  scopus
    14. T. F. Sharapov, “On the resolvent of multidimensional operators with frequently changing boundary conditions in the case of the homogenized Dirichlet condition”, Sb. Math., 205:10 (2014), 1492–1527  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    15. V. M. Hut, “Asymptotic Expansions of Eigenvalues and Eigenfunctions of a Vibrating System With Stiff Light-Weight Inclusions”, J Math Sci, 198:1 (2014), 13  crossref
    16. T. A. Mel’nik, G. A. Chechkin, “On new types of vibrations of thick cascade junctions with concentrated masses”, Dokl. Math, 87:1 (2013), 102  crossref  mathscinet  zmath  isi  scopus
    17. G. A. Chechkin, T. A. Mel'nyk, “Spatial-skin effect for eigenvibrations of a thick cascade junction with ‘heavy’ concentrated masses”, Math. Meth. Appl. Sci, 2013, n/a  crossref  mathscinet  isi  scopus
    18. Holovatyi Yu.D., Hut V.M., “Vibrating Systems with Rigid Light-Weight Inclusions: Asymptotics of the Spectrum and Eigenspaces”, Ukr. Math. J., 64:10 (2013), 1495–1513  crossref  mathscinet  zmath  isi  elib  scopus
    19. G. A. Chechkin, Yu. O. Koroleva, L.-E. Persson, P. Wall, “A new weighted Friedrichs-type inequality for a perforated domain with a sharp constant”, Eurasian Math. J., 2:1 (2011), 81–103  mathnet  mathscinet  zmath
    20. Gregory A. Chechkin, Taras A. Mel'nyk, “Asymptotics of eigenelements to spectral problem in thick cascade junction with concentrated masses”, Applicable Analysis, 2011, 1  crossref  mathscinet  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:841
    Russian version PDF:317
    English version PDF:29
    References:135
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025