Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2006, Volume 70, Issue 4, Pages 717–730
DOI: https://doi.org/10.1070/IM2006v070n04ABEH002325
(Mi im587)
 

This article is cited in 13 scientific papers (total in 13 papers)

On some properties of stable and unstable surfaces with prescribed mean curvature

V. A. Klyachin

Volgograd State University
References:
Abstract: We investigate the properties of stable (and unstable) hypersurfaces with prescribed mean curvature in Euclidean space and establish some necessary and sufficient tests for stability stated in terms of the external geometric structure of the surface. We prove an analogue of a well-known theorem of A. D. Aleksandrov that generalizes the variational property of the sphere and find an exact estimate for the extent of a stable tubular surface of constant mean curvature. Our method is based on an analysis of the first and second variations of area-type functionals for the surfaces under consideration.
Received: 23.09.2005
Revised: 13.03.2006
Bibliographic databases:
UDC: 517.957+514.752
Language: English
Original paper language: Russian
Citation: V. A. Klyachin, “On some properties of stable and unstable surfaces with prescribed mean curvature”, Izv. Math., 70:4 (2006), 717–730
Citation in format AMSBIB
\Bibitem{Kly06}
\by V.~A.~Klyachin
\paper On some properties of stable and unstable surfaces with prescribed mean curvature
\jour Izv. Math.
\yr 2006
\vol 70
\issue 4
\pages 717--730
\mathnet{http://mi.mathnet.ru/eng/im587}
\crossref{https://doi.org/10.1070/IM2006v070n04ABEH002325}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2261171}
\zmath{https://zbmath.org/?q=an:1147.53008}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000241664000004}
\elib{https://elibrary.ru/item.asp?id=9282138}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33750877732}
Linking options:
  • https://www.mathnet.ru/eng/im587
  • https://doi.org/10.1070/IM2006v070n04ABEH002325
  • https://www.mathnet.ru/eng/im/v70/i4/p77
  • This publication is cited in the following 13 articles:
    1. Vladimir Klyachin, “THE ESTIMATES OF PRINCIPLE FREQUENCY OF DOMAINS ON RIEMANNIAN MANIFOLDS AND MINIMAL SURFACES STABILITY”, Mathematical Physics and Computer Simulation, 27:3 (2024), 15  crossref
    2. M. B. Karmanova, “O minimalnykh poverkhnostyakh nad mnogoobraziyami Karno proizvolnoi glubiny”, Matem. tr., 25:1 (2022), 74–101  mathnet  crossref
    3. M. B. Karmanova, “Minimal Surfaces Over Carnot Manifolds”, Sib. Adv. Math., 32:3 (2022), 211  crossref
    4. N. M. Poluboyarova, “Relations between length and instability of tubular extremal surfaces”, Ufa Math. J., 13:1 (2021), 77–84  mathnet  crossref  isi
    5. N. M. Poluboyarova, “On stable extremals of the potential energy functional”, Siberian Math. J., 62:3 (2021), 482–488  mathnet  crossref  crossref  isi  elib
    6. A. A. Klyachin, V. A. Klyachin, “Research in the field of geometric analysis at Volgograd state university”, Mathematical Physics and Computer Simulation, 23:2 (2020), 5–21  mathnet  mathnet  crossref
    7. N. M. Poluboyarova, “On instability of extremals of potential energy functional”, Ufa Math. J., 10:3 (2018), 77–85  mathnet  crossref  isi
    8. N. M. Poluboyarova, “Some Properties of Extremals of the Functional of Potential Energy”, J. Math. Sci. (N. Y.), 252:2 (2021), 225–231  mathnet  crossref  mathscinet
    9. N. M. Poluboyarova, “Uravneniya ekstremalei funktsionala potentsialnoi energii”, Vestn. Volgogr. gos. un-ta. Ser. 1, Mat. Fiz., 2016, no. 5(36), 60–72  mathnet  crossref
    10. Kubis S., Wojcik W., “Geometric approach to nuclear pasta phases”, Phys. Rev. C, 94:6 (2016), 065805  crossref  isi  scopus
    11. Z. S. Akhtemov, N. N. Stepanyan, V. G. Fainshtein, G. V. Rudenko, “Structure of the magnetic field at altitudes of 1–1.15 solar radii”, Astron. Rep., 60:9 (2016), 839  crossref
    12. V. A. Klyachin, E. G. Grigoreva, “Chislennoe issledovanie ustoichivosti ravnovesnykh poverkhnostei s ispolzovaniem paketa NumPy”, Vestn. Volgogr. gos. un-ta. Ser. 1, Mat. Fiz., 2015, no. 2(27), 17–30  mathnet  crossref
    13. M. M. Molodenskiǐ, L. I. Starkova, “Solar structures related to coronal holes”, Astron. Rep., 51:12 (2007), 1036  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:579
    Russian version PDF:238
    English version PDF:25
    References:104
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025