Loading [MathJax]/jax/output/SVG/config.js
Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2004, Volume 68, Issue 4, Pages 783–832
DOI: https://doi.org/10.1070/IM2004v068n04ABEH000498
(Mi im498)
 

This article is cited in 10 scientific papers (total in 10 papers)

Blow-up of solutions of a class of strongly non-linear equations of Sobolev type

M. O. Korpusov

M. V. Lomonosov Moscow State University, Faculty of Physics
References:
Abstract: We consider two different abstract Cauchy problems for equations of Sobolev type with operator coefficients in Banach spaces. For the first problem we obtain, under certain conditions on the coefficients, optimal theorems on the existence and non-existence of a solution global in time. In the case when the solution is blown up we obtain upper and lower bounds for the blow-up time. For the second problem we obtain optimal upper and lower bounds for the rate of blow-up of a solution. In each case we give examples in which the operator coefficients have a physical meaning.
Received: 18.12.2003
Bibliographic databases:
UDC: 519.634
Language: English
Original paper language: Russian
Citation: M. O. Korpusov, “Blow-up of solutions of a class of strongly non-linear equations of Sobolev type”, Izv. Math., 68:4 (2004), 783–832
Citation in format AMSBIB
\Bibitem{Kor04}
\by M.~O.~Korpusov
\paper Blow-up of solutions of a~class of strongly non-linear equations of Sobolev type
\jour Izv. Math.
\yr 2004
\vol 68
\issue 4
\pages 783--832
\mathnet{http://mi.mathnet.ru/eng/im498}
\crossref{https://doi.org/10.1070/IM2004v068n04ABEH000498}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2084564}
\zmath{https://zbmath.org/?q=an:1079.35025}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000224802800005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645512479}
Linking options:
  • https://www.mathnet.ru/eng/im498
  • https://doi.org/10.1070/IM2004v068n04ABEH000498
  • https://www.mathnet.ru/eng/im/v68/i4/p151
  • This publication is cited in the following 10 articles:
    1. Zhang H. Hu Q. Liu G., “Global Existence, Asymptotic Stability and Blow-Up of Solutions For the Generalized Boussinesq Equation With Nonlinear Boundary Condition”, Math. Nachr., 293:2 (2020), 386–404  crossref  mathscinet  isi  scopus
    2. M. O. Korpusov, “Blow-up and global solubility in the classical sense of the Cauchy problem for a formally hyperbolic equation with a non-coercive source”, Izv. Math., 84:5 (2020), 930–959  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. Piskin E., Ekinci F., “Blow Up, Exponential Growth of Solution For a Reaction-Diffusion Equation With Multiple Nonlinearities”, Tbil. Math. J., 12:4 (2019), 61–70  mathscinet  isi
    4. Antontsev S.N., de Oliveira H.B., Khompysh Kh., “Generalized Kelvin-Voigt Equations For Nonhomogeneous and Incompressible Fluids”, Commun. Math. Sci., 17:7 (2019), 1915–1948  crossref  mathscinet  isi
    5. M. O. Korpusov, “Blow-up of solutions of nonclassical nonlocal nonlinear model equations”, Comput. Math. Math. Phys., 59:4 (2019), 583–609  mathnet  crossref  crossref  isi  elib
    6. Erhan Pişkin, Fatma Ekinci, “Blow up, exponential growth of solution for a reaction-diffusion equation with multiple nonlinearities”, Tbilisi Math. J., 12:4 (2019)  crossref
    7. Hongwei Zhang, Jun Lu, Qingying Hu, “Exponential growth of solution of a strongly nonlinear generalized Boussinesq equation”, Computers & Mathematics with Applications, 2014  crossref  mathscinet  scopus
    8. Blow-up in Nonlinear Sobolev Type Equations, 2011, 621  crossref
    9. M. O. Korpusov, A. G. Sveshnikov, “Blow-up of solutions of a class of strongly non-linear dissipative wave equations of Sobolev type with sources”, Izv. Math., 69:4 (2005), 733–770  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    10. M. O. Korpusov, A. G. Sveshnikov, “On blowup of a solution to a Sobolev-type equation with a nonlocal source”, Siberian Math. J., 46:3 (2005), 443–452  mathnet  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:722
    Russian version PDF:288
    English version PDF:45
    References:101
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025