Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2003, Volume 67, Issue 1, Pages 91–119
DOI: https://doi.org/10.1070/IM2003v067n01ABEH000420
(Mi im420)
 

This article is cited in 19 scientific papers (total in 19 papers)

Stability of the operator of ε-projection to the set of splines in C[0,1]

E. D. Livshits
References:
Abstract: We study the problem of the existence of a continuous selection for the metric projection to the set of n-link piecewise-linear functions in the space C[0,1]. We show that there is a continuous selection if and only if n=1 or n=2. We establish that there is a continuous ε-selection to L (LC[0,1]) if L belongs to a certain class of sets that contains, in particular, the set of algebraic rational fractions and the set of piecewise-linear functions. We construct an example showing that sometimes there is no ε-selection for a set of splines of degree d>1.
Received: 12.04.2001
Revised: 28.08.2002
Bibliographic databases:
UDC: 517.518.8
Language: English
Original paper language: Russian
Citation: E. D. Livshits, “Stability of the operator of ε-projection to the set of splines in C[0,1]”, Izv. Math., 67:1 (2003), 91–119
Citation in format AMSBIB
\Bibitem{Liv03}
\by E.~D.~Livshits
\paper Stability of the operator of $\varepsilon$-projection to the set of splines in~$C[0,1]$
\jour Izv. Math.
\yr 2003
\vol 67
\issue 1
\pages 91--119
\mathnet{http://mi.mathnet.ru/eng/im420}
\crossref{https://doi.org/10.1070/IM2003v067n01ABEH000420}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1957918}
\zmath{https://zbmath.org/?q=an:1079.41007}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000185513200006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748485416}
Linking options:
  • https://www.mathnet.ru/eng/im420
  • https://doi.org/10.1070/IM2003v067n01ABEH000420
  • https://www.mathnet.ru/eng/im/v67/i1/p99
  • This publication is cited in the following 19 articles:
    1. A. R. Alimov, K. S. Ryutin, I. G. Tsar'kov, “Existence, uniqueness, and stability of best and near-best approximations”, Russian Math. Surveys, 78:3 (2023), 399–442  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. I. G. Tsar'kov, “Approximative properties of sets and continuous selections”, Sb. Math., 211:8 (2020), 1190–1211  mathnet  crossref  crossref  zmath  adsnasa  isi  elib
    3. I. G. Tsar'kov, “Local Approximation Properties of Sets and Continuous Selections on Them”, Math. Notes, 106:6 (2019), 995–1008  mathnet  crossref  crossref  mathscinet  isi  elib
    4. I. G. Tsar'kov, “Weakly monotone sets and continuous selection in asymmetric spaces”, Sb. Math., 210:9 (2019), 1326–1347  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. I. G. Tsar'kov, “Continuous selections for metric projection operators and for their generalizations”, Izv. Math., 82:4 (2018), 837–859  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. I. G. Tsar'kov, “Continuous selections in asymmetric spaces”, Sb. Math., 209:4 (2018), 560–579  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    7. I. G. Tsar'kov, “New Criteria for the Existence of a Continuous ε-Selection”, Math. Notes, 104:5 (2018), 727–734  mathnet  crossref  crossref  mathscinet  isi  elib
    8. I. G. Tsar'kov, “Weakly monotone sets and continuous selection from a near-best approximation operator”, Proc. Steklov Inst. Math., 303 (2018), 227–238  mathnet  crossref  crossref  mathscinet  isi  elib
    9. I. G. Tsar'kov, “Continuous selection for set-valued mappings”, Izv. Math., 81:3 (2017), 645–669  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    10. I. G. Tsar'kov, “Continuous ε-Selection and Monotone Path-Connected Sets”, Math. Notes, 101:6 (2017), 1040–1049  mathnet  crossref  crossref  mathscinet  isi  elib
    11. Tsar'kov I.G., “Continuous Selection From the Sets of Best and Near-Best Approximation”, Dokl. Math., 96:1 (2017), 362–364  crossref  mathscinet  zmath  isi  scopus
    12. I. G. Tsarkov, “NEPRERYVNYE VYBORKI IZ MNOZhESTVA BLIZhAIShIKh I POChTI BLIZhAIShIKh TOChEK, “Doklady Akademii nauk””, Doklady Akademii Nauk, 2017, no. 4, 373  crossref
    13. I. G. Tsar'kov, “Continuous ε-selection”, Sb. Math., 207:2 (2016), 267–285  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    14. A. R. Alimov, I. G. Tsar'kov, “Connectedness and solarity in problems of best and near-best approximation”, Russian Math. Surveys, 71:1 (2016), 1–77  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    15. I. G. Tsar'kov, “Local and global continuous ε-selection”, Izv. Math., 80:2 (2016), 442–461  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    16. A. R. Alimov, I. G. Tsar'kov, “Connectedness and other geometric properties of suns and Chebyshev sets”, J. Math. Sci., 217:6 (2016), 683–730  mathnet  crossref  mathscinet
    17. Dušan Repovš, Pavel V. Semenov, Recent Progress in General Topology III, 2014, 711  crossref
    18. Livshits E. D., “Continuous selections of operators of almost best approximation by splines in the space Lp[0,1]. I”, Russ. J. Math. Phys., 12:2 (2005), 215–218  mathscinet  zmath  isi  elib
    19. E. D. Livshits, “On Almost-Best Approximation by Piecewise Polynomial Functions in the Space C[0,1]”, Math. Notes, 78:4 (2005), 586–591  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:717
    Russian version PDF:253
    English version PDF:24
    References:91
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025