Processing math: 100%
Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2011, Volume 75, Issue 3, Pages 471–505
DOI: https://doi.org/10.1070/IM2011v075n03ABEH002541
(Mi im4113)
 

This article is cited in 18 scientific papers (total in 18 papers)

On the spectrum of a two-dimensional periodic operator with a small localized perturbation

D. I. Borisov

Bashkir State Pedagogical University
References:
Abstract: We consider a two-dimensional periodic self-adjoint second-order differential operator on the plane with a small localized perturbation. The perturbation is given by an arbitrary (not necessarily symmetric) operator. It is localized in the sense that it acts on a pair of weighted Sobolev spaces and sends functions of sufficiently rapid growth to functions of sufficiently rapid decay. By studying the spectrum of the perturbed operator, we establish that the essential spectrum is stable, the residual spectrum is absent, and the set of isolated eigenvalues is discrete. We obtain necessary and sufficient conditions for the existence of new eigenvalues arising from the ends of lacunae in the essential spectrum. In the case when such eigenvalues exist, we construct the first terms of asymptotic expansions of these eigenvalues and the corresponding eigenfunctions.
Keywords: non-selfadjoint operator, perturbation, zone spectrum, eigenvalue, asymptotics.
Received: 03.05.2009
Revised: 15.03.2010
Bibliographic databases:
Document Type: Article
UDC: 517.984
MSC: 35C20, 35J10
Language: English
Original paper language: Russian
Citation: D. I. Borisov, “On the spectrum of a two-dimensional periodic operator with a small localized perturbation”, Izv. Math., 75:3 (2011), 471–505
Citation in format AMSBIB
\Bibitem{Bor11}
\by D.~I.~Borisov
\paper On the spectrum of a~two-dimensional periodic operator with a~small localized perturbation
\jour Izv. Math.
\yr 2011
\vol 75
\issue 3
\pages 471--505
\mathnet{http://mi.mathnet.ru/eng/im4113}
\crossref{https://doi.org/10.1070/IM2011v075n03ABEH002541}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2847781}
\zmath{https://zbmath.org/?q=an:1233.35066}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011IzMat..75..471B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000292303800002}
\elib{https://elibrary.ru/item.asp?id=20358791}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80053525667}
Linking options:
  • https://www.mathnet.ru/eng/im4113
  • https://doi.org/10.1070/IM2011v075n03ABEH002541
  • https://www.mathnet.ru/eng/im/v75/i3/p29
  • This publication is cited in the following 18 articles:
    1. Borisov I D. Zezyulin D.A. Znojil M., “Bifurcations of Thresholds in Essential Spectra of Elliptic Operators Under Localized Non-Hermitian Perturbations”, Stud. Appl. Math., 146:4 (2021), 834–880  crossref  mathscinet  isi
    2. Borisov I D., Zezyulin D.A., “Bifurcations of Essential Spectra Generated By a Small Non-Hermitian Hole. i. Meromorphic Continuations”, Russ. J. Math. Phys., 28:4 (2021), 416–433  crossref  mathscinet  isi
    3. Yang Ch., Sun H., “Essential Spectra of Singular Hamiltonian Differential Operators of Arbitrary Order Under a Class of Perturbations”, Stud. Appl. Math., 147:1 (2021), 209–229  crossref  mathscinet  isi
    4. Drouot A., “The Bulk-Edge Correspondence For Continuous Dislocated Systems”, Ann. Inst. Fourier, 71:3 (2021), 1185–1239  crossref  mathscinet  isi
    5. Borisov D. Cardone G., “Spectra of Operator Pencils With Small P & Xdcab;& X1D4Af;& Xdcaf;-Symmetric Periodic Perturbation”, ESAIM-Control OPtim. Calc. Var., 26 (2020), UNSP 21  crossref  mathscinet  isi
    6. Drouot A. Fefferman C.L. Weinstein M.I., “Defect Modes For Dislocated Periodic Media”, Commun. Math. Phys., 377:3 (2020), 1637–1680  crossref  mathscinet  isi
    7. Lu J., Watson A.B., Weinstein M.I., “Dirac Operators and Domain Walls”, SIAM J. Math. Anal., 52:2 (2020), 1115–1145  crossref  mathscinet  isi  scopus
    8. D. I. Borisov, A. M. Golovina, A. I. Mukhametrakhimova, “Analytic Continuation of Resolvents of Elliptic Operators in a Multidimensional Cylinder”, J Math Sci, 250:2 (2020), 260  crossref
    9. Alexis Drouot, “Characterization of edge states in perturbed honeycomb structures”, Pure Appl. Analysis, 1:3 (2019), 385  crossref
    10. D. I. Borisov, “Perturbations of the Continuous Spectrum of a Certain Nonlinear Two-Dimensional Operator Sheaf”, J. Math. Sci. (N. Y.), 252:2 (2021), 135–146  mathnet  crossref  mathscinet
    11. D. I. Borisov, M. Znojil, “On eigenvalues of a PT-symmetric operator in a thin layer”, Sb. Math., 208:2 (2017), 173–199  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    12. Borisov D.I., Dmitriev S.V., “On the Spectral Stability of Kinks in 2D Klein-Gordon Model with Parity-Time-Symmetric Perturbation”, Stud. Appl. Math., 138:3 (2017), 317–342  crossref  mathscinet  zmath  isi  scopus
    13. Borisov D., Golovina A., Veselic I., “Quantum Hamiltonians with Weak Random Abstract Perturbation. I. Initial Length Scale Estimate”, Ann. Henri Poincare, 17:9 (2016), 2341–2377  crossref  mathscinet  zmath  isi  elib  scopus
    14. D.I. Borisov, “The Emergence of Eigenvalues of a PT-Symmetric Operator in a Thin Strip”, Math. Notes, 98:6 (2015), 872–883  mathnet  crossref  crossref  mathscinet  isi  elib
    15. Duchene V., Vukicevic I., Weinstein M.I., “Oscillatory and Localized Perturbations of Periodic Structures and the Bifurcation of Defect Modes”, SIAM J. Math. Anal., 47:5 (2015), 3832–3883  crossref  mathscinet  zmath  isi  elib  scopus
    16. Duchene V., Vukicevic I., Weinstein M.I., “Homogenized Description of Defect Modes in Periodic Structures With Localized Defects”, Commun. Math. Sci., 13:3 (2015), 777–823  crossref  mathscinet  zmath  isi  elib  scopus
    17. A. M. Golovina, “On the spectrum of elliptic operators with distant perturbation in the space”, St. Petersburg Math. J., 25:5 (2014), 735–754  mathnet  crossref  mathscinet  zmath  isi  elib
    18. Golovina A.M., “On the resolvent of elliptic operators with distant perturbations in the space”, Russ. J. Math. Phys., 19:2 (2012), 182–192  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:821
    Russian version PDF:242
    English version PDF:33
    References:114
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025