Abstract:
The Schrödinger operator in a thin infinite strip with PT-symmetric boundary conditions and a localized potential is studied. The case of a virtual level on the threshold of the essential spectrum of an efficient one-dimensional operator is considered. Sufficient conditions for the transformation of this level into an isolated eigenvalue are obtained and the first terms of the asymptotic expansion are calculated for this eigenvalue. Sufficient conditions for the absence of such an eigenvalue are also obtained.
Citation:
D.I. Borisov, “The Emergence of Eigenvalues of a PT-Symmetric Operator in a Thin Strip”, Mat. Zametki, 98:6 (2015), 809–823; Math. Notes, 98:6 (2015), 872–883
\Bibitem{Bor15}
\by D.I.~Borisov
\paper The Emergence of Eigenvalues of a $\mathcal{PT}$-Symmetric Operator in a Thin Strip
\jour Mat. Zametki
\yr 2015
\vol 98
\issue 6
\pages 809--823
\mathnet{http://mi.mathnet.ru/mzm10974}
\crossref{https://doi.org/10.4213/mzm10974}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438537}
\elib{https://elibrary.ru/item.asp?id=24850244}
\transl
\jour Math. Notes
\yr 2015
\vol 98
\issue 6
\pages 872--883
\crossref{https://doi.org/10.1134/S000143461511019X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000369701000019}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84953209512}
Linking options:
https://www.mathnet.ru/eng/mzm10974
https://doi.org/10.4213/mzm10974
https://www.mathnet.ru/eng/mzm/v98/i6/p809
This publication is cited in the following 3 articles:
Borisov I D., Zezyulin D.A., Znojil M., “Bifurcations of Thresholds in Essential Spectra of Elliptic Operators Under Localized Non-Hermitian Perturbations”, Stud. Appl. Math., 146:4 (2021), 834–880
Borisov I D., Zezyulin D.A., “Bifurcations of Essential Spectra Generated By a Small Non-Hermitian Hole. i. Meromorphic Continuations”, Russ. J. Math. Phys., 28:4 (2021), 416–433
D. I. Borisov, M. Znojil, “On eigenvalues of a PT-symmetric operator in a thin layer”, Sb. Math., 208:2 (2017), 173–199