Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2010, Volume 74, Issue 4, Pages 849–882
DOI: https://doi.org/10.1070/IM2010v074n04ABEH002510
(Mi im2815)
 

This article is cited in 19 scientific papers (total in 19 papers)

On properties of the space of quantum states and their application to the construction of entanglement monotones

M. E. Shirokov

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: We consider infinite-dimensional versions of the notions of the convex hull and convex roof of a function defined on the set of quantum states. We obtain sufficient conditions for the coincidence and continuity of restrictions of different convex hulls of a given lower semicontinuous function to the subset of states with bounded mean generalized energy (an affine lower semicontinuous non-negative function). These results are used to justify an infinite-dimensional generalization of the convex roof construction of entanglement monotones that is widely used in finite dimensions. We give several examples of entanglement monotones produced by the generalized convex roof construction. In particular, we consider an infinite-dimensional generalization of the notion of Entanglement of Formation and study its properties.
Keywords: convex hull and convex roof of a function, quantum state, entanglement monotone, entanglement of formation.
Received: 16.06.2008
Revised: 21.04.2009
Bibliographic databases:
Document Type: Article
UDC: 519.248.3
MSC: 46N50, 81P40
Language: English
Original paper language: Russian
Citation: M. E. Shirokov, “On properties of the space of quantum states and their application to the construction of entanglement monotones”, Izv. Math., 74:4 (2010), 849–882
Citation in format AMSBIB
\Bibitem{Shi10}
\by M.~E.~Shirokov
\paper On properties of the space of quantum states and their
application to the construction of entanglement monotones
\jour Izv. Math.
\yr 2010
\vol 74
\issue 4
\pages 849--882
\mathnet{http://mi.mathnet.ru/eng/im2815}
\crossref{https://doi.org/10.1070/IM2010v074n04ABEH002510}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2730096}
\zmath{https://zbmath.org/?q=an:1210.46056}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010IzMat..74..849S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000281623100009}
\elib{https://elibrary.ru/item.asp?id=20358760}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78049342205}
Linking options:
  • https://www.mathnet.ru/eng/im2815
  • https://doi.org/10.1070/IM2010v074n04ABEH002510
  • https://www.mathnet.ru/eng/im/v74/i4/p189
  • This publication is cited in the following 19 articles:
    1. M. E. Shirokov, “On Local Continuity of Characteristics of Composite Quantum Systems”, Proc. Steklov Inst. Math., 324 (2024), 225–260  mathnet  crossref  crossref  mathscinet  zmath
    2. E. R. Loubenets, M. Namkung, “Conclusive Discrimination by N Sequential Receivers between r2 Arbitrary Quantum States”, Russ. J. Math. Phys., 30:2 (2023), 219  crossref
    3. Maksim Shirokov, “Close-to-optimal continuity bound for the von Neumann entropy and other quasi-classical applications of the Alicki–Fannes–Winter technique”, Lett. Math. Phys., 113 (2023), 121–35  mathnet  crossref
    4. M. E. Shirokov, “Quantifying continuity of characteristics of composite quantum systems”, Phys. Scr., 98:4 (2023), 042002  mathnet  crossref
    5. A. S. Holevo, “On Optimization Problem for Positive Operator-Valued Measures”, Lobachevskii J. Math., 43:7 (2022), 1646–1650  mathnet  crossref
    6. Holevo A., “On the Classical Capacity of General Quantum Gaussian Measurement”, Entropy, 23:3 (2021), 377  crossref  mathscinet  isi
    7. Lami L., Regula B., Takagi R., Ferrari G., “Framework For Resource Quantification in Infinite-Dimensional General Probabilistic Theories”, Phys. Rev. A, 103:3 (2021), 032424  crossref  mathscinet  isi  scopus
    8. Weis S., Shirokov M., “The Face Generated By a Point, Generalized Affine Constraints, and Quantum Theory”, J. Convex Anal., 28:3 (2021), 847–870  isi
    9. Sakai Yu., “Generalizations of Fano'S Inequality For Conditional Information Measures Via Majorization Theory Dagger”, Entropy, 22:3 (2020), 288  crossref  mathscinet  isi
    10. Shirokov M.E., Bulinski A.V., “On Quantum Channels and Operations Preserving Finiteness of the Von Neumann Entropy”, Lobachevskii J. Math., 41:12, SI (2020), 2383–2396  mathnet  crossref  mathscinet  isi
    11. Alexander S. Holevo, A. A. Kuznetsova, “The information capacity of entanglement-assisted continuous variable quantum measurement”, J. Phys. A, 53:37 (2020), 375307–17  mathnet  crossref  isi  scopus
    12. Regula B., “Convex Geometry of Quantum Resource Quantification”, J. Phys. A-Math. Theor., 51:4 (2018), 045303  crossref  mathscinet  zmath  isi  scopus
    13. Wilde M.M., “Entanglement Cost and Quantum Channel Simulation”, Phys. Rev. A, 98:4 (2018), 042338  crossref  mathscinet  isi
    14. Sakai Yu., “Generalized Fano-Type Inequality For Countably Infinite Systems With List-Decoding”, Proceedings of 2018 International Symposium on Information Theory and Its Applications (Isita2018), IEEE, 2018, 727–731  crossref  isi
    15. M. E. Shirokov, “Estimates for discontinuity jumps of information characteristics of quantum systems and channels”, Problems of Information Transmission, 52:3 (2016), 239–264  mathnet  crossref  mathscinet  isi  elib
    16. Shirokov M.E., “Squashed entanglement in infinite dimensions”, J. Math. Phys., 57:3 (2016), 032203  crossref  mathscinet  zmath  isi  elib  scopus
    17. A. S. Holevo, M. E. Shirokov, “Criterion of weak compactness for families of generalized quantum ensembles and its applications”, Theory Probab. Appl., 60:2 (2016), 320–325  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    18. Chang M., Quantum Stochastics, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge Univ Press, 2015  crossref  mathscinet  zmath  isi  scopus
    19. M. E. Shirokov, “Schmidt Number and Partially Entanglement-Breaking Channels in Infinite-Dimensional Quantum Systems”, Math. Notes, 93:5 (2013), 766–779  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:725
    Russian version PDF:234
    English version PDF:42
    References:109
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025