Loading [MathJax]/jax/output/CommonHTML/jax.js
Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2009, Volume 73, Issue 5, Pages 861–892
DOI: https://doi.org/10.1070/IM2009v073n05ABEH002466
(Mi im2633)
 

This article is cited in 21 scientific papers (total in 21 papers)

On subgroups of free Burnside groups of odd exponent n1003

V. S. Atabekian

Yerevan State University
References:
Abstract: We prove that for any odd number n1003, every non-cyclic subgroup of the 2-generator free Burnside group of exponent n contains a subgroup isomorphic to the free Burnside group of exponent n and infinite rank. Various families of relatively free n-periodic subgroups are constructed in free periodic groups of odd exponent n665. For the same groups, we describe a monomorphism τ such that a word A is an elementary period of rank α if and only if its image τ(A) is an elementary period of rank α+1.
Keywords: free Burnside group, variety of periodic groups, group with cyclic subgroups, periodic word, reduced word.
Received: 12.03.2007
Bibliographic databases:
UDC: 512.543+512.544
MSC: 20F50, 20F05
Language: English
Original paper language: Russian
Citation: V. S. Atabekian, “On subgroups of free Burnside groups of odd exponent n1003”, Izv. Math., 73:5 (2009), 861–892
Citation in format AMSBIB
\Bibitem{Ata09}
\by V.~S.~Atabekian
\paper On subgroups of free Burnside groups of odd exponent $n\geqslant 1003$
\jour Izv. Math.
\yr 2009
\vol 73
\issue 5
\pages 861--892
\mathnet{http://mi.mathnet.ru/eng/im2633}
\crossref{https://doi.org/10.1070/IM2009v073n05ABEH002466}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2584226}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009IzMat..73..861A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000272485400001}
\elib{https://elibrary.ru/item.asp?id=20358692}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-71449109831}
Linking options:
  • https://www.mathnet.ru/eng/im2633
  • https://doi.org/10.1070/IM2009v073n05ABEH002466
  • https://www.mathnet.ru/eng/im/v73/i5/p3
  • This publication is cited in the following 21 articles:
    1. Atabekyan V.S. Gevorkyan G.G., “Central Extensions of N-Torsion Groups”, J. Contemp. Math. Anal.-Armen. Aca., 57:1 (2022), 26–34  crossref  isi
    2. V. S. Atabekyan, H. T. Aslanyan, S. T. Aslanyan, “Powers of subsets in free periodic groups”, Uch. zapiski EGU, ser. Fizika i Matematika, 56:2 (2022), 43–48  mathnet  crossref
    3. V. S. Atabekyan, V. G. Mikaelyan, “On the Product of Subsets in Periodic Groups”, J. Contemp. Mathemat. Anal., 57:6 (2022), 395  crossref
    4. V. S. Atabekyan, V. G. Mikaelyan, “O proizvedenii podmnozhestv v pereodicheskikh gruppakh”, Proceedings of NAS RA. Mathematics, 2022, 12  crossref
    5. V. S. Atabekyan, “The set of 2-genereted C-simple relatively free groups has the cardinality of the continuum”, Uch. zapiski EGU, ser. Fizika i Matematika, 54:2 (2020), 81–86  mathnet  crossref
    6. Atabekyan V.S., Gevorgyan A.L., Stepanyan Sh.A., “The Unique Trace Property of N-Periodic Product of Groups”, J. Contemp. Math. Anal.-Armen. Aca., 52:4 (2017), 161–165  crossref  mathscinet  zmath  isi
    7. Button J.O., “Groups and Embeddings in Sl(2, C)”, Commun. Algebr., 44:1 (2016), 265–278  crossref  mathscinet  zmath  isi
    8. S. I. Adian, V. S. Atabekyan, “C-Simplicity of n-Periodic Products”, Math. Notes, 99:5 (2016), 631–635  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    9. V. S. Atabekyan, “Automorphism groups and endomorphism semigroups of groups B(m,n)”, Algebra and Logic, 54:1 (2015), 58–62  mathnet  crossref  crossref  mathscinet  isi
    10. S. I. Adian, Varuzhan Atabekyan, “Characteristic properties and uniform non-amenability of n-periodic products of groups”, Izv. Math., 79:6 (2015), 1097–1110  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    11. Atabekyan V.S., “the Automorphisms of Endomorphism Semigroups of Free Burnside Groups”, Int. J. Algebr. Comput., 25:4 (2015), 669–674  crossref  mathscinet  zmath  isi  elib
    12. Atabekyan V.S., “The Groups of Automorphisms Are Complete for Free Burnside Groups of Odd Exponents N >= 1003”, Int. J. Algebr. Comput., 23:6 (2013), 1485–1496  crossref  mathscinet  zmath  isi  elib
    13. V. S. Atabekyan, “The automorphism tower problem for free periodic groups”, Uch. zapiski EGU, ser. Fizika i Matematika, 2013, no. 2, 3–7  mathnet
    14. V. S. Atabekyan, “On normal subgroups in the periodic products of S. I. Adian”, Proc. Steklov Inst. Math., 274 (2011), 9–24  mathnet  crossref  mathscinet  isi  elib  elib
    15. Atabekyan V.S., “On CEP-subgroups of n-periodic products”, J. Contemp. Math. Anal., 46:5 (2011), 237–242  crossref  mathscinet  zmath  isi
    16. V. S. Atabekyan, “Nonunitarizable Periodic Groups”, Math. Notes, 87:6 (2010), 908–911  mathnet  crossref  crossref  mathscinet  isi
    17. S. I. Adian, “The Burnside problem and related topics”, Russian Math. Surveys, 65:5 (2010), 805–855  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    18. A. S. Pahlevanyan, “Independent pairs in free Burnside groups”, Uch. zapiski EGU, ser. Fizika i Matematika, 2010, no. 2, 58–62  mathnet
    19. H. R. Rostami, “Non-unitarizable groups”, Uch. zapiski EGU, ser. Fizika i Matematika, 2010, no. 3, 40–43  mathnet
    20. V. S. Atabekyan, “Monomorphisms of Free Burnside Groups”, Math. Notes, 86:4 (2009), 457–462  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:1055
    Russian version PDF:137
    English version PDF:28
    References:166
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025