Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2010, Volume 65, Issue 5, Pages 805–855
DOI: https://doi.org/10.1070/RM2010v065n05ABEH004702
(Mi rm9376)
 

This article is cited in 27 scientific papers (total in 27 papers)

The Burnside problem and related topics

S. I. Adian

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: This paper gives a survey of results related to the famous Burnside problem on periodic groups. A negative solution of this problem was first published in joint papers of P. S. Novikov and the author in 1968. The theory of transformations of words in free periodic groups that was created in these papers and its various modifications give a very productive approach to the investigation of hard problems in group theory. In 1950 the Burnside problem gave rise to another problem on finite periodic groups, formulated by Magnus and called by him the restricted Burnside problem. Here it is called the Burnside–Magnus problem. In the Burnside problem the question of local finiteness of periodic groups of a given exponent was posed, but the Burnside–Magnus problem is the question of the existence of a maximal finite periodic group R(m,n) of a fixed period n with a given number m of generators. These problems complement each other. The publication in a joint paper by the author and Razborov in 1987 of the first effective proof of the well-known result of Kostrikin on the existence of a maximal group R(m,n) for any prime n, together with an indication of primitive recursive upper bounds for the orders of these groups, stimulated investigations of the Burnside–Magnus problem as well. Very soon other effective proofs appeared, and then Zel'manov extended Kostrikin's result to the case when n is any power of a prime number. These results are discussed in the last section of this paper.
Bibliography: 105 titles.
Keywords: Burnside problem, infinite periodic group, finiteness, periodic word, simultaneous induction, identities in groups, Burnside–Magnus problem, Lie algebras, Engel condition.
Received: 02.08.2010
Bibliographic databases:
Document Type: Article
UDC: 512.54+512.54.0+512.543
MSC: Primary 20F50; Secondary 01A65
Language: English
Original paper language: Russian
Citation: S. I. Adian, “The Burnside problem and related topics”, Russian Math. Surveys, 65:5 (2010), 805–855
Citation in format AMSBIB
\Bibitem{Adi10}
\by S.~I.~Adian
\paper The Burnside problem and related topics
\jour Russian Math. Surveys
\yr 2010
\vol 65
\issue 5
\pages 805--855
\mathnet{http://mi.mathnet.ru/eng/rm9376}
\crossref{https://doi.org/10.1070/RM2010v065n05ABEH004702}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2767907}
\zmath{https://zbmath.org/?q=an:1230.20001}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011RuMaS..65..805A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000286623200001}
\elib{https://elibrary.ru/item.asp?id=20423077}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79955652897}
Linking options:
  • https://www.mathnet.ru/eng/rm9376
  • https://doi.org/10.1070/RM2010v065n05ABEH004702
  • https://www.mathnet.ru/eng/rm/v65/i5/p5
  • This publication is cited in the following 27 articles:
    1. Dhiraj K. Pandey, Antonio R. Nicolosi, “Pseudorandom Function from Learning Burnside Problem”, Mathematics, 13:7 (2025), 1193  crossref
    2. Anton Beletskiy, Ilya Ivanov-Pogodaev, “Combinatorial Estimations on Burnside Type Problems”, Mathematics, 12:5 (2024), 665  crossref
    3. Dhiraj K. Pandey, Antonio R. Nicolosi, Lecture Notes in Computer Science, 14534, Innovative Security Solutions for Information Technology and Communications, 2024, 178  crossref
    4. Vladimir I. Senashov, “m-aperiodic words on three-letter alphabet”, Siberian Aerospace Journal, 25:2 (2024), 176  crossref
    5. I. A. Ivanov-Pogodaev, “A semigroup of paths on a sequence of uniformly elliptic complexes”, Funct. Anal. Appl., 57:2 (2023), 117–142  mathnet  crossref  crossref
    6. Figelius M., Lohrey M., Zetzsche G., “Closure Properties of Knapsack Semilinear Groups”, J. Algebra, 589 (2022), 437–482  crossref  mathscinet  isi
    7. Atabekyan V.S., Gevorkyan G.G., “Central Extensions of N-Torsion Groups”, J. Contemp. Math. Anal.-Armen. Aca., 57:1 (2022), 26–34  crossref  isi
    8. V. S. Atabekyan, G. G. Gevorgyan, “Tsentralnye rasshireniya n-kruchenykh grupp”, Proceedings of NAS RA. Mathematics, 2022, 19  crossref
    9. V. S. Atabekyan, L. D. Beklemishev, V. S. Guba, I. G. Lysenok, A. A. Razborov, A. L. Semenov, “Questions in algebra and mathematical logic. Scientific heritage of S. I. Adian”, Russian Math. Surveys, 76:1 (2021), 1–27  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    10. I. A. Ivanov-Pogodaev, A. Ya. Kanel-Belov, “Finitely presented nilsemigroups: complexes with the property of uniform ellipticity”, Izv. Math., 85:6 (2021), 1146–1180  mathnet  crossref  crossref  zmath  adsnasa  isi
    11. Ville Salo, Lecture Notes in Computer Science, 12286, Cellular Automata and Discrete Complex Systems, 2020, 111  crossref
    12. Ivanov-Pogodaev I., Malev S., Sapir O., “A Construction of a Finitely Presented Semigroup Containing An Infinite Square-Free Ideal With Zero Multiplication”, Int. J. Algebr. Comput., 28:8, SI (2018), 1565–1573  crossref  mathscinet  zmath  isi  scopus
    13. Movsisyan Yu.M., “Hyperidentities and Related Concepts, I”, Armen. J. Math., 9:2 (2017), 146–222  mathscinet  zmath  isi
    14. S. I. Adian, “New estimates of odd exponents of infinite Burnside groups”, Proc. Steklov Inst. Math., 289 (2015), 33–71  mathnet  crossref  crossref  isi  elib
    15. S. I. Adian, Varuzhan Atabekyan, “Characteristic properties and uniform non-amenability of $n$-periodic products of groups”, Izv. Math., 79:6 (2015), 1097–1110  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    16. George M. Bergman, Universitext, An Invitation to General Algebra and Universal Constructions, 2015, 45  crossref
    17. Daria V. Lytkina, Victor D. Mazurov, “Groups with given element orders”, Zhurn. SFU. Ser. Matem. i fiz., 7:2 (2014), 191–203  mathnet
    18. V. S. Atabekyan, “Splitting Automorphisms of Order $p^k$ of Free Burnside Groups are Inner”, Math. Notes, 95:5 (2014), 586–589  mathnet  crossref  crossref  mathscinet  isi  elib
    19. V. L. Popov, “Jordan groups and automorphism groups of algebraic varieties”, Springer Proc. Math. Statist., 79 (2014), 185–213  mathnet  crossref  scopus
    20. V. S. Atabekyan, “Splitting automorphisms of free Burnside groups”, Sb. Math., 204:2 (2013), 182–189  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:2910
    Russian version PDF:919
    English version PDF:307
    References:159
    First page:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025