Abstract:
We study certain properties of the group J(Z)
of substitutions of formal power series in one variable with integer
coefficients. We show that J(Z), regarded as a topological
group, has four generators and cannot be generated by fewer elements.
In particular, we show that the one-dimensional continuous homology
of J(Z) is isomorphic
to Z⊕Z⊕Z2⊕Z2.
We study various topological and geometric properties
of the coset space J(R)/J(Z).
We compute the real cohomology ˜H∗(J(Z);R) with uniformly locally constant supports and show that it
is naturally isomorphic to the cohomology of the nilpotent part of the Lie
algebra of formal vector fields on the line.
Citation:
I. K. Babenko, S. A. Bogatyi, “On the group of substitutions of formal power series with integer coefficients”, Izv. Math., 72:2 (2008), 241–264
\Bibitem{BabBog08}
\by I.~K.~Babenko, S.~A.~Bogatyi
\paper On the group of substitutions of formal power series with integer coefficients
\jour Izv. Math.
\yr 2008
\vol 72
\issue 2
\pages 241--264
\mathnet{http://mi.mathnet.ru/eng/im2486}
\crossref{https://doi.org/10.1070/IM2008v072n02ABEH002399}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2413648}
\zmath{https://zbmath.org/?q=an:1152.20026}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000256185100002}
\elib{https://elibrary.ru/item.asp?id=11570593}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-44249091405}
Linking options:
https://www.mathnet.ru/eng/im2486
https://doi.org/10.1070/IM2008v072n02ABEH002399
https://www.mathnet.ru/eng/im/v72/i2/p39
This publication is cited in the following 7 articles:
Hélène Eynard-Bontemps, Andrés Navas, “ON RESIDUES AND CONJUGACIES FOR GERMS OF 1-D PARABOLIC DIFFEOMORPHISMS IN FINITE REGULARITY”, J. Inst. Math. Jussieu, 2023, 1
Bogatyy S.A., “Commutants of the Multidimensional Jennings Group”, Aequ. Math., 95:6 (2021), 1119–1130
Bogataya S.I., Bogatyy S.A., “Series of Commutants of the Jennings Group J(Z(2))”, Topology Appl., 169:SI (2014), 136–147
I. K. Babenko, “Algebra, geometry, and topology of the substitution group of formal power series”, Russian Math. Surveys, 68:1 (2013), 1–68
V. M. Buchstaber, “Complex cobordism and formal groups”, Russian Math. Surveys, 67:5 (2012), 891–950
I. K. Babenko, S. A. Bogatyi, “The amenability of the substitution group of formal power series”, Izv. Math., 75:2 (2011), 239–252
S. A. Melikhov, “Steenrod homotopy”, Russian Math. Surveys, 64:3 (2009), 469–551