Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js
Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2009, Volume 64, Issue 3, Pages 469–551
DOI: https://doi.org/10.1070/RM2009v064n03ABEH004620
(Mi rm9284)
 

This article is cited in 8 scientific papers (total in 8 papers)

Steenrod homotopy

S. A. Melikhov

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: Steenrod homotopy theory is a natural framework for doing algebraic topology on general spaces in terms of algebraic topology of polyhedra; or from a different viewpoint, it studies the topology of the lim1 functor (for inverse sequences of groups). This paper is primarily concerned with the case of compacta, in which Steenrod homotopy coincides with strong shape. An attempt is made to simplify the foundations of the theory and to clarify and improve some of its major results. With geometric tools such as Milnor's telescope compactification, comanifolds (=mock bundles), and the Pontryagin–Thom construction, new simple proofs are obtained for results by Barratt–Milnor, Geoghegan–Krasinkiewicz, Dydak, Dydak–Segal, Krasinkiewicz–Minc, Cathey, Mittag-Leffler–Bourbaki, Fox, Eda–Kawamura, Edwards–Geoghegan, Jussila, and for three unpublished results by Shchepin. An error in Lisitsa's proof of the ‘Hurewicz theorem in Steenrod homotopy’ is corrected. It is shown that over compacta, R. H. Fox's overlayings are equivalent to I. M. James' uniform covering maps. Other results include:
A morphism between inverse sequences of countable (possibly non-Abelian) groups that induces isomorphisms on lim and lim1 is invertible in the pro-category. This implies the ‘Whitehead theorem in Steenrod homotopy’, thereby answering two questions of Koyama.
If X is an LCn1-compactum, n, then its n-dimensional Steenrod homotopy classes are representable by maps S^n\to\nobreak X, provided that X is simply connected. The assumption of simple connectedness cannot be dropped, by a well-known result of Dydak and Zdravkovska.
\bullet A connected compactum is Steenrod connected (=pointed 1-movable), if and only if every uniform covering space of it has countably many uniform connected components.
Bibliography: 117 titles.
Received: 17.03.2009
Bibliographic databases:
Document Type: Article
UDC: 515.142.26
MSC: 55D**, 55N**
Language: English
Original paper language: Russian
Citation: S. A. Melikhov, “Steenrod homotopy”, Russian Math. Surveys, 64:3 (2009), 469–551
Citation in format AMSBIB
\Bibitem{Mel09}
\by S.~A.~Melikhov
\paper Steenrod homotopy
\jour Russian Math. Surveys
\yr 2009
\vol 64
\issue 3
\pages 469--551
\mathnet{http://mi.mathnet.ru/eng/rm9284}
\crossref{https://doi.org/10.1070/RM2009v064n03ABEH004620}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2553079}
\zmath{https://zbmath.org/?q=an:1185.55001}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009RuMaS..64..469M}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000272713200002}
\elib{https://elibrary.ru/item.asp?id=20425289}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78149453615}
Linking options:
  • https://www.mathnet.ru/eng/rm9284
  • https://doi.org/10.1070/RM2009v064n03ABEH004620
  • https://www.mathnet.ru/eng/rm/v64/i3/p73
  • This publication is cited in the following 8 articles:
    1. S. A. Melikhov, “Topological isotopy and Cochran's derived invariants”, Contemp. Math., 772 (2021), 249–266  mathnet  crossref  scopus
    2. A. R. Alimov, I. G. Tsar'kov, “Connectedness and solarity in problems of best and near-best approximation”, Russian Math. Surveys, 71:1 (2016), 1–77  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. Dydak J., “Overlays and group actions”, Topology Appl., 207 (2016), 22–32  crossref  mathscinet  zmath  isi  elib  scopus
    4. A. R. Alimov, “Monotone path-connectedness and solarity of Menger-connected sets in Banach spaces”, Izv. Math., 78:4 (2014), 641–655  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. J. Brazas, P. Fabel, “Spanier groups and the first shape group”, Rocky Mountain J. Math., 44:5 (2014), 1415–1444  crossref  mathscinet  zmath  isi  scopus
    6. A. R. Alimov, I. G. Tsar'kov, “Connectedness and other geometric properties of suns and Chebyshev sets”, J. Math. Sci., 217:6 (2016), 683–730  mathnet  crossref  mathscinet
    7. S. A. Melikhov, J. Zaja̧c, “Contractible polyhedra in products of trees and absolute retracts in products of dendrites”, Proc. Amer. Math. Soc., 141:7 (2013), 2519–2535  crossref  mathscinet  zmath  isi  elib  scopus
    8. S. Bogatyi, O. Frolkina, “On multiplicity of maps”, Topology Appl., 159:7 (2012), 1778–1786  crossref  mathscinet  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:952
    Russian version PDF:373
    English version PDF:67
    References:88
    First page:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025