Abstract:
This paper studies the problem of convergence of invariant measure which is a result of perturbation by a diffusion process with a small parameter (tending to zero) of certain smooth dynamical systems.
\Bibitem{Kif74}
\by Yu.~I.~Kifer
\paper On small random perturbations of some smooth dynamical systems
\jour Math. USSR-Izv.
\yr 1974
\vol 8
\issue 5
\pages 1083--1107
\mathnet{http://mi.mathnet.ru/eng/im2002}
\crossref{https://doi.org/10.1070/IM1974v008n05ABEH002139}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=388452}
Linking options:
https://www.mathnet.ru/eng/im2002
https://doi.org/10.1070/IM1974v008n05ABEH002139
https://www.mathnet.ru/eng/im/v38/i5/p1091
This publication is cited in the following 65 articles:
Cesar Maldonado, Hugo Nieto Loredo, “Annealed central limit theorem for a class of contractive random dynamical systems”, Journal of Difference Equations and Applications, 2024, 1
Sumith Reddy Anugu, Vivek S. Borkar, “A Selection Procedure for Extracting the Unique Feller Weak Solution of Degenerate Diffusions”, Appl Math Optim, 87:3 (2023)
Stefano Galatolo, Hugo Marsan, “Quadratic response and speed of convergence of invariant measures in the zero-noise limit”, DCDS, 41:11 (2021), 5303
Harry Crimmins, Gary Froyland, “Fourier approximation of the statistical properties of Anosov maps on tori”, Nonlinearity, 33:11 (2020), 6244
F. Cipriano, H. Ouerdiane, R. Vilela Mendes, “Stochastic stability of invariant measures: The 2D Euler equation”, Int. J. Mod. Phys. B, 33:17 (2019), 1950185
Eleonora Catsigeras, Springer Proceedings in Mathematics & Statistics, 285, New Trends in One-Dimensional Dynamics, 2019, 113
G. R. Ivanitskii, A. A. Deev, E. P. Khizhnyak, “Long-term dynamic structural memory in water: can it exist?”, Phys. Usp., 57:1 (2014), 37–65
Lai-Sang Young, “Mathematical theory of Lyapunov exponents”, J. Phys. A: Math. Theor, 46:25 (2013), 254001
Lozi Mappings, 2013, 263
Sergey P. Kuznetsov, Hyperbolic Chaos, 2012, 3
S. P. Kuznetsov, “Dynamical chaos and uniformly hyperbolic attractors: from mathematics to physics”, Phys. Usp., 54:2 (2011), 119–144
Mei Zhu, Duo Wang, Maozheng Guo, “Stochastic equilibria of an asset pricing model with heterogeneous beliefs and random dividends”, Journal of Economic Dynamics and Control, 35:1 (2011), 131
E. A. Sataev, “Stokhasticheskie svoistva singulyarno giperbolicheskikh attraktorov”, Nelineinaya dinam., 6:1 (2010), 187–206
P Duarte, M J Torres, “Spectral stability of Markov systems”, Nonlinearity, 21:3 (2008), 381
Alexey Yu. Jalnine, Sergey P. Kuznetsov, “Effect of noise in a nonautonomous system of alternately excited oscillators with a hyperbolic strange attractor”, Phys Rev E, 77:3 (2008), 036220
R. Vilela Mendes, “Network Dynamics: Tools and Examples”, Nonlinear Dyn, 44:1-4 (2006), 181
Springer Series in Synergetics, 15, Noise-Induced Transitions, 2006, 201
V. S. Anishchenko, T. E. Vadivasova, G. A. Okrokvertskhov, G. I. Strelkova, “Statistical properties of dynamical chaos”, Phys. Usp., 48:2 (2005), 151–166
R. VILELA MENDES, “TOOLS FOR NETWORK DYNAMICS”, Int. J. Bifurcation Chaos, 15:04 (2005), 1185