Loading [MathJax]/jax/output/SVG/config.js
Uspekhi Fizicheskikh Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



UFN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Fizicheskikh Nauk, 2011, Volume 181, Number 2, Pages 121–149
DOI: https://doi.org/10.3367/UFNr.0181.201102a.0121
(Mi ufn2331)
 

This article is cited in 77 scientific papers (total in 77 papers)

REVIEWS OF TOPICAL PROBLEMS

Dynamical chaos and uniformly hyperbolic attractors: from mathematics to physics

S. P. Kuznetsov

Saratov Branch, Kotel'nikov Institute of Radio-Engineering and Electronics, Russian Academy of Sciences
References:
Abstract: Research is reviewed on the identification and construction of physical systems with chaotic dynamics due to uniformly hyperbolic attractors (such as the Plykin attraction or the Smale–Williams solenoid). Basic concepts of the mathematics involved and approaches proposed in the literature for constructing systems with hyperbolic attractors are discussed. Topics covered include periodic pulse-driven models; dynamics models consisting of periodically repeated stages, each described by its own differential equations; the construction of systems of alternately excited coupled oscillators; the use of parametrically excited oscillations; and the introduction of delayed feedback. Some maps, differential equations, and simple mechanical and electronic systems exhibiting chaotic dynamics due to the presence of uniformly hyperbolic attractors are presented as examples.
Received: April 1, 2010
Revised: September 16, 2010
English version:
Physics–Uspekhi, 2011, Volume 54, Issue 2, Pages 119–144
DOI: https://doi.org/10.3367/UFNe.0181.201102a.0121
Bibliographic databases:
Document Type: Article
PACS: 05.45.-a, 45.50.-j, 84.30.-r
Language: Russian
Citation: S. P. Kuznetsov, “Dynamical chaos and uniformly hyperbolic attractors: from mathematics to physics”, UFN, 181:2 (2011), 121–149; Phys. Usp., 54:2 (2011), 119–144
Citation in format AMSBIB
\Bibitem{Kuz11}
\by S.~P.~Kuznetsov
\paper Dynamical chaos and uniformly hyperbolic attractors: from mathematics to physics
\jour UFN
\yr 2011
\vol 181
\issue 2
\pages 121--149
\mathnet{http://mi.mathnet.ru/ufn2331}
\crossref{https://doi.org/10.3367/UFNr.0181.201102a.0121}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011PhyU...54..119K}
\elib{https://elibrary.ru/item.asp?id=15584608}
\transl
\jour Phys. Usp.
\yr 2011
\vol 54
\issue 2
\pages 119--144
\crossref{https://doi.org/10.3367/UFNe.0181.201102a.0121}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000294812700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79959921536}
Linking options:
  • https://www.mathnet.ru/eng/ufn2331
  • https://www.mathnet.ru/eng/ufn/v181/i2/p121
  • This publication is cited in the following 77 articles:
    1. René Lozi, Vladimir Belykh, Jim Michael Cushing, Lyudmila Efremova, Saber Elaydi, Laura Gardini, Michał Misiurewicz, Eckehard Schöll, Galina Strelkova, “The paths of nine mathematicians to the realm of dynamical systems”, Journal of Difference Equations and Applications, 30:1 (2024), 1  crossref
    2. L. S. Efremova, “Ramified continua as global attractors of C 1 -smooth self-maps of a cylinder close to skew products”, Journal of Difference Equations and Applications, 29:9-12 (2023), 1244  crossref
    3. Vyacheslav Kruglov, Igor Sataev, “On hyperbolic attractors in a modified complex Shimizu–Morioka system”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 33:6 (2023)  crossref
    4. Mikhail E. Semenov, Sergei V. Borzunov, Peter A. Meleshenko, “A new way to compute the Lyapunov characteristic exponents for non-smooth and discontinues dynamical systems”, Nonlinear Dyn, 109:3 (2022), 1805  crossref
    5. Medvedsky A.L., Meleshenko P.A., Nesterov V.A., Reshetova O.O., Semenov M.E., “Dynamics of Hysteretic-Related Van-der-Pol Oscillators: the Small Parameter Method”, J. Comput. Syst. Sci. Int., 60:4 (2021), 511–529  crossref  isi
    6. Kuznetsov S.P., Kruglov V.P., Sataev I.R., “Smale-Williams Solenoids in Autonomous System With Saddle Equilibrium”, Chaos, 31:1 (2021), 013140  crossref  isi
    7. Kruglov V.P., Kuptsov V P., “Theoretical Models of Physical Systems With Rough Chaos”, Izv. Vyss. Uchebn. Zaved.-Prikl. Nelineynaya Din., 29:1 (2021), 35–77  crossref  isi
    8. Sergey Gonchenko, Alexey Kazakov, Dmitry Turaev, “Wild pseudohyperbolic attractor in a four-dimensional Lorenz system”, Nonlinearity, 34:4 (2021), 2018  crossref
    9. Viktor V. Ovchinnikov, Svetlana V. Yakutina, Nadezhda V. Uchevatkina, “Mechanical and Corrosion Properties of VT6 Titanium Alloy after Irradiation with Helium and Aluminum Lons”, KEM, 887 (2021), 229  crossref
    10. Robert S. MacKay, Understanding Complex Systems, Physics of Biological Oscillators, 2021, 71  crossref
    11. G. I. Strelkova, V. S. Anishchenko, “Spatio-temporal structures in ensembles of coupled chaotic systems”, Phys. Usp., 63:2 (2020), 145–161  mathnet  crossref  crossref  adsnasa  isi  elib
    12. S. P. Kuznetsov, “Some Lattice Models with Hyperbolic Chaotic Attractors”, Rus. J. Nonlin. Dyn., 16:1 (2020), 13–21  mathnet  crossref  elib
    13. Bakhanova V Yu., Kazakov A.O., Karatetskaia E.Yu., Kozlov A.D., Safonov K.A., “On Homoclinic Attractors of Three-Dimensional Flows”, Izv. Vyss. Uchebn. Zaved.-Prikl. Nelineynaya Din., 28:3 (2020), 231–258  crossref  isi  scopus
    14. Kuptsov P.V., Kuznetsov S.P., “Route to Hyperbolic Hyperchaos in a Nonautonomous Time-Delay System”, Chaos, 30:11 (2020), 113113  crossref  isi  scopus
    15. Sokolov A., Galayko D., Kennedy M.P., Blokhina E., “Near-Limit Kinetic Energy Harvesting From Arbitrary Acceleration Waveforms: Feasibility Study By the Example of Human Motion”, IEEE Access, 8 (2020), 219223–219232  crossref  isi  scopus
    16. Semenov M.E., Reshetova O.O., Meleshenko P.A., Klinskikh A.F., “Oscillations and Hysteresis: From Simple Harmonic Oscillator and Unusual Unbounded Increasing Amplitude Phenomena to the Van der Pol Oscillator and Chaos Control”, Int. J. Eng. Syst. Model. Simul., 11:4, SI (2020), 147–159  crossref  isi  scopus
    17. Semenov M., Meleshenko P., Reshetova O., Solovyov A., 2020 Vi International Conference on Information Technology and Nanotechnology (IEEE Itnt-2020), ed. Kudryashov D., IEEE, 2020  crossref  isi
    18. Kuznetsov S.P., Kruglov V.P., “Hyperbolic Chaos in a System of Two Froude Pendulums With Alternating Periodic Braking”, Commun. Nonlinear Sci. Numer. Simul., 67 (2019), 152–161  crossref  isi  scopus
    19. S. P. Kuznetsov, “Generation of Robust Hyperbolic Chaos in CNN”, Rus. J. Nonlin. Dyn., 15:2 (2019), 109–124  mathnet  crossref  elib
    20. Kuznetsov S.P., Sedova V Yu., “Robust Hyperbolic Chaos in Froude Pendulum With Delayed Feedback and Periodic Braking”, Int. J. Bifurcation Chaos, 29:12 (2019), 1930035  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи физических наук Physics-Uspekhi
    Statistics & downloads:
    Abstract page:2052
    Full-text PDF :685
    References:132
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025