Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1971, Volume 5, Issue 1, Pages 233–266
DOI: https://doi.org/10.1070/IM1971v005n01ABEH001040
(Mi im1955)
 

This article is cited in 20 scientific papers (total in 20 papers)

Control of Markov processes and WW-spaces

N. V. Krylov
References:
Abstract: Problems in the control of continuous Markov processes on a semicompactum by two players with conflicting interests are studied. The basic content of the paper is a derivation of Bellman's equations in the case where control is exercised for an infinite time (Theorem 3), and in the case of a problem of optimal stopping (Theorem 6). The results are illustrated by two examples (Theorems 1 and 2).
Received: 08.12.1969
Bibliographic databases:
UDC: 519.2
MSC: Primary 93E05, 90D05; Secondary 93E20, 60J25
Language: English
Original paper language: Russian
Citation: N. V. Krylov, “Control of Markov processes and WW-spaces”, Math. USSR-Izv., 5:1 (1971), 233–266
Citation in format AMSBIB
\Bibitem{Kry71}
\by N.~V.~Krylov
\paper Control of Markov processes and $W$-spaces
\jour Math. USSR-Izv.
\yr 1971
\vol 5
\issue 1
\pages 233--266
\mathnet{http://mi.mathnet.ru/eng/im1955}
\crossref{https://doi.org/10.1070/IM1971v005n01ABEH001040}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=295427}
\zmath{https://zbmath.org/?q=an:0274.93049}
Linking options:
  • https://www.mathnet.ru/eng/im1955
  • https://doi.org/10.1070/IM1971v005n01ABEH001040
  • https://www.mathnet.ru/eng/im/v35/i1/p224
  • This publication is cited in the following 20 articles:
    1. Pavel V. Gapeev, “Discounted nonzero-sum optimal stopping games under Poisson random intervention times”, Stochastics, 2024, 1  crossref
    2. Pavel V. Gapeev, “Discounted optimal stopping zero-sum games in diffusion type models with maxima and minima”, Adv. Appl. Probab., 2024, 1  crossref
    3. Yu. V. Averboukh, “Approximation of value function of differential game with minimal cost”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 31:4 (2021), 536–561  mathnet  crossref
    4. Pavel V. Gapeev, Neofytos Rodosthenous, “Optimal stopping games in models with various information flows”, Stochastic Analysis and Applications, 39:6 (2021), 1050  crossref
    5. Arnab Basu, Łukasz Stettner, “Zero-Sum Markov Games with Impulse Controls”, SIAM J. Control Optim., 58:1 (2020), 580  crossref
    6. Helin Wu, Yong Ren, Feng Hu, “Dynkin game under g-expectation in continuous time”, Arab. J. Math., 9:2 (2020), 459  crossref
    7. 和林 吴, “Constraint BSDE for Stopping Game”, AAM, 07:06 (2018), 723  crossref
    8. Pavel V. Gapeev, Christoph K�hn, “Perpetual convertible bonds in jump-diffusion models”, Statistics & Decisions, 23:1 (2005), 15  crossref  mathscinet  zmath
    9. A. A. Yushkevich, Markov Processes and Controlled Markov Chains, 2002, 255  crossref
    10. Andrzej S. Nowak, Krzysztof Szajowski, Stochastic and Differential Games, 1999, 297  crossref
    11. Yoshio Ohtsubo, “Constrained dynkin's stopping problem with continuous parameter”, Stochastics and Stochastic Reports, 26:1 (1989), 21  crossref
    12. Yoshio Ohtsubo, Lecture Notes in Mathematics, 1299, Probability Theory and Mathematical Statistics, 1988, 376  crossref
    13. Hideo Nagai, “Non zero-sum stopping games of symmetric Markov processes”, Probab Theory Relat Fields, 75:4 (1987), 487  crossref  mathscinet  zmath
    14. Yoshio Ohtsubo, “Neveu's martingale conditions and closedness in Dynkin stopping problem with a finite constraint”, Stochastic Processes and their Applications, 22:2 (1986), 333  crossref
    15. J. P. Lepeltier, ET M. A. Maingueneau, “Le jeu de Dynkin en theorie generale sans l'hypothese de Mokobodski”, Stochastics, 13:1-2 (1984), 25  crossref
    16. Łukasz Stettner, “Zero-sum Markov games with stopping and impulsive strategies”, Appl Math Optim, 9:1 (1982), 1  crossref  mathscinet  isi
    17. Stochastic Differential Equations and Applications, 1976, 523  crossref
    18. E. B. Frid, “On the semiregularity of boundary points for nonlinear equations”, Math. USSR-Sb., 23:4 (1974), 483–507  mathnet  crossref  mathscinet  zmath
    19. A. Bensoussan, J.L. Lions, “Problemes de temps d’arret optimal et inequations variationnelles paraboliques”, Applicable Analysis, 3:3 (1973), 267  crossref
    20. Avner Friedman, “Stochastic games and variational inequalities”, Arch. Rational Mech. Anal., 51:5 (1973), 321  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:548
    Russian version PDF:138
    English version PDF:51
    References:102
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025