Loading [MathJax]/jax/output/CommonHTML/jax.js
Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1981, Volume 16, Issue 1, Pages 103–134
DOI: https://doi.org/10.1070/IM1981v016n01ABEH001279
(Mi im1634)
 

This article is cited in 20 scientific papers (total in 20 papers)

Rational G-surfaces

M. Kh. Gizatullin
References:
Abstract: In this paper the author determines the structure of complete rational surfaces on which one can define a group action in such a way that for each element of the group there exists a nonzero linear equivalence divisor class with nonnegative self-intersection index which is invariant with respect to this element. If one excludes the case when this action factors through an algebraic action of a linear algebraic group, then all such surfaces are elliptic bundles, and the action of the group preserves the family of fibers.
Bibliography: 11 titles.
Received: 20.08.1979
Bibliographic databases:
UDC: 513.6
MSC: Primary 14L30; Secondary 14J25
Language: English
Original paper language: Russian
Citation: M. Kh. Gizatullin, “Rational G-surfaces”, Math. USSR-Izv., 16:1 (1981), 103–134
Citation in format AMSBIB
\Bibitem{Giz80}
\by M.~Kh.~Gizatullin
\paper Rational $G$-surfaces
\jour Math. USSR-Izv.
\yr 1981
\vol 16
\issue 1
\pages 103--134
\mathnet{http://mi.mathnet.ru/eng/im1634}
\crossref{https://doi.org/10.1070/IM1981v016n01ABEH001279}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=563788}
\zmath{https://zbmath.org/?q=an:0465.14017|0428.14022}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981LP24600006}
Linking options:
  • https://www.mathnet.ru/eng/im1634
  • https://doi.org/10.1070/IM1981v016n01ABEH001279
  • https://www.mathnet.ru/eng/im/v44/i1/p110
  • This publication is cited in the following 20 articles:
    1. Anne Lonjou, Christian Urech, “Actions of Cremona groups on CAT(0) cube complexes”, Duke Math. J., 170:17 (2021)  crossref
    2. Cantat S. de Cornulier Y., “Distortion in Cremona Groups”, Ann. Scuola Norm. Super. Pisa-Cl. Sci., 20:2 (2020), 827–858  isi
    3. Cantat S., “The Cremona Group”, Algebraic Geometry: Salt Lake City 2015, Pt 1, Proceedings of Symposia in Pure Mathematics, 97, no. 1, eds. DeFernex T., Hassett B., Mustata M., Olsson M., Popa M., Thomas R., Amer Mathematical Soc, 2018, 101–142  crossref  isi
    4. Blanc J. Calabri A., “on Degenerations of Plane Cremona Transformations”, Math. Z., 282:1-2 (2016), 223–245  crossref  isi
    5. Julien Grivaux, “Parabolic automorphisms of projective surfaces (after M. H. Gizatullin)”, Mosc. Math. J., 16:2 (2016), 275–298  mathnet  crossref  mathscinet
    6. Fei Hu, JongHae Keum, De-Qi Zhang, “Criteria for the existence of equivariant fibrations on algebraic surfaces and hyperkähler manifolds and equality of automorphisms up to powers: a dynamical viewpoint”, J. London Math. Soc., 92:3 (2015), 724  crossref
    7. Eric Bedford, Serge Cantat, Kyounghee Kim, “Pseudo-automorphisms with no invariant foliation”, JMD, 8:2 (2014), 221  crossref
    8. Serge Cantat, Stéphane Lamy, Yves Cornulier, “Normal subgroups in the Cremona group”, Acta Math, 210:1 (2013), 31  crossref
    9. Burt Totaro, “The cone conjecture for Calabi-Yau pairs in dimension 2”, Duke Math. J., 154:2 (2010)  crossref
    10. Curtis T. McMullen, “Dynamics on blowups of the projective plane”, Publ math IHES, 105:1 (2007), 49  crossref  mathscinet  zmath  isi
    11. V. V. Przyjalkowski, I. A. Cheltsov, K. A. Shramov, “Hyperelliptic and trigonal Fano threefolds”, Izv. Math., 69:2 (2005), 365–421  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    12. I. A. Cheltsov, “Birationally superrigid cyclic triple spaces”, Izv. Math., 68:6 (2004), 1229–1275  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    13. I. A. Cheltsov, “Rationality of an Enriques–Fano threefold of genus five”, Izv. Math., 68:3 (2004), 607–618  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    14. J-Ch Angl s d Auriac, J-M Maillard, C M Viallet, “A classification of four-state spin edge Potts models”, J Phys A Math Gen, 35:44 (2002), 9251  crossref  mathscinet  zmath  adsnasa  elib
    15. D.-Q Zhang, “Automorphisms of Finite Order on Rational Surfaces”, Journal of Algebra, 238:2 (2001), 560  crossref
    16. Masanori Koitabashi, “Automorphism groups of generic rational surfaces”, Journal of Algebra, 116:1 (1988), 130  crossref
    17. Brian Harbourne, “Rational surfaces with infinite automorphism group and no antipluricanonical curve”, Proc. Amer. Math. Soc., 99:3 (1987), 409  crossref
    18. Yu. I. Manin, M. A. Tsfasman, “Rational varieties: algebra, geometry and arithmetic”, Russian Math. Surveys, 41:2 (1986), 51–116  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    19. Shigeyuki KONDO, “Enriques surfaces with finite automorphism groups”, Jpn. j. math, 12:2 (1986), 191  crossref
    20. Fumio Sakai, “Anticanonical models of rational surfaces”, Math. Ann., 269:3 (1984), 389  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:509
    Russian version PDF:188
    English version PDF:52
    References:74
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025