Abstract:
In this paper the author determines the structure of complete rational surfaces on which one can define a group action in such a way that for each element of the group there exists a nonzero linear equivalence divisor class with nonnegative self-intersection index which is invariant with respect to this element. If one excludes the case when this action factors through an algebraic action of a linear algebraic group, then all such surfaces are elliptic bundles, and the action of the group preserves the family of fibers.
Bibliography: 11 titles.
This publication is cited in the following 20 articles:
Anne Lonjou, Christian Urech, “Actions of Cremona groups on CAT(0) cube complexes”, Duke Math. J., 170:17 (2021)
Cantat S. de Cornulier Y., “Distortion in Cremona Groups”, Ann. Scuola Norm. Super. Pisa-Cl. Sci., 20:2 (2020), 827–858
Cantat S., “The Cremona Group”, Algebraic Geometry: Salt Lake City 2015, Pt 1, Proceedings of Symposia in Pure Mathematics, 97, no. 1, eds. DeFernex T., Hassett B., Mustata M., Olsson M., Popa M., Thomas R., Amer Mathematical Soc, 2018, 101–142
Blanc J. Calabri A., “on Degenerations of Plane Cremona Transformations”, Math. Z., 282:1-2 (2016), 223–245
Julien Grivaux, “Parabolic automorphisms of projective surfaces (after M. H. Gizatullin)”, Mosc. Math. J., 16:2 (2016), 275–298
Fei Hu, JongHae Keum, De-Qi Zhang, “Criteria for the existence of equivariant fibrations on algebraic surfaces and hyperkähler manifolds and equality of automorphisms up to powers: a dynamical viewpoint”, J. London Math. Soc., 92:3 (2015), 724
Eric Bedford, Serge Cantat, Kyounghee Kim, “Pseudo-automorphisms with no invariant foliation”, JMD, 8:2 (2014), 221
Serge Cantat, Stéphane Lamy, Yves Cornulier, “Normal subgroups in the Cremona group”, Acta Math, 210:1 (2013), 31
Burt Totaro, “The cone conjecture for Calabi-Yau pairs in dimension 2”, Duke Math. J., 154:2 (2010)
Curtis T. McMullen, “Dynamics on blowups of the projective plane”, Publ math IHES, 105:1 (2007), 49
V. V. Przyjalkowski, I. A. Cheltsov, K. A. Shramov, “Hyperelliptic and trigonal Fano threefolds”, Izv. Math., 69:2 (2005), 365–421
I. A. Cheltsov, “Birationally superrigid cyclic triple spaces”, Izv. Math., 68:6 (2004), 1229–1275
I. A. Cheltsov, “Rationality of an Enriques–Fano threefold of genus five”, Izv. Math., 68:3 (2004), 607–618
J-Ch Angl s d Auriac, J-M Maillard, C M Viallet, “A classification of four-state spin edge Potts models”, J Phys A Math Gen, 35:44 (2002), 9251
D.-Q Zhang, “Automorphisms of Finite Order on Rational Surfaces”, Journal of Algebra, 238:2 (2001), 560
Masanori Koitabashi, “Automorphism groups of generic rational surfaces”, Journal of Algebra, 116:1 (1988), 130
Brian Harbourne, “Rational surfaces with infinite automorphism group and no antipluricanonical curve”, Proc. Amer. Math. Soc., 99:3 (1987), 409
Yu. I. Manin, M. A. Tsfasman, “Rational varieties: algebra, geometry and arithmetic”, Russian Math. Surveys, 41:2 (1986), 51–116
Shigeyuki KONDO, “Enriques surfaces with finite automorphism groups”, Jpn. j. math, 12:2 (1986), 191