Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1983, Volume 20, Issue 2, Pages 333–354
DOI: https://doi.org/10.1070/IM1983v020n02ABEH001353
(Mi im1619)
 

This article is cited in 10 scientific papers (total in 10 papers)

A finiteness theorem for representations with a free algebra of invariants

V. L. Popov
References:
Abstract: It is proved that for any connected semisimple algebraic group G defined over an algebraically closed field of characteristic zero there exist (up to isomorphism) only a finite number of finite-dimensional rational G-modules containing no nonzero fixed vectors and having a free algebra of invariants. The proof is constructive and makes it possible in principle to indicate these G-modules explicitly. It is also proved that for all irreducible G-modules V, except for a finite number, the degree of the Poincaré series of the algebra of invariants (regarded as a rational function) equals dimV.
Bibliography: 21 titles.
Received: 14.09.1981
Bibliographic databases:
Document Type: Article
UDC: 519.4
MSC: Primary 15A72, 20G05; Secondary 52A25
Language: English
Original paper language: Russian
Citation: V. L. Popov, “A finiteness theorem for representations with a free algebra of invariants”, Math. USSR-Izv., 20:2 (1983), 333–354
Citation in format AMSBIB
\Bibitem{Pop82}
\by V.~L.~Popov
\paper A~finiteness theorem for representations with a~free algebra of invariants
\jour Math. USSR-Izv.
\yr 1983
\vol 20
\issue 2
\pages 333--354
\mathnet{http://mi.mathnet.ru/eng/im1619}
\crossref{https://doi.org/10.1070/IM1983v020n02ABEH001353}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=651651}
\zmath{https://zbmath.org/?q=an:0547.20034}
Linking options:
  • https://www.mathnet.ru/eng/im1619
  • https://doi.org/10.1070/IM1983v020n02ABEH001353
  • https://www.mathnet.ru/eng/im/v46/i2/p347
  • This publication is cited in the following 10 articles:
    1. A. BOLSINOV, A. IZOSIMOV, I. KOZLOV, “JORDAN–KRONECKER INVARIANTS OF LIE ALGEBRA REPRESENTATIONS AND DEGREES OF INVARIANT POLYNOMIALS”, Transformation Groups, 28:2 (2023), 541  crossref
    2. M. P. Bento, “The invariant space of multi-Higgs doublet models”, J. High Energ. Phys., 2021:5 (2021)  crossref
    3. Harm Derksen, Gregor Kemper, Encyclopaedia of Mathematical Sciences, Computational Invariant Theory, 2015, 31  crossref
    4. Gerald W. Schwarz, Proceedings of the International Congress of Mathematicians, 1995, 333  crossref
    5. V. L. Popov, E. B. Vinberg, Encyclopaedia of Mathematical Sciences, 55, Algebraic Geometry IV, 1994, 123  crossref
    6. D. I. Panyushev, “Orbits of maximal dimension of solvable subgroups of reductive linear groups, and reduction for U-invariants”, Math. USSR-Sb., 60:2 (1988), 365–375  mathnet  crossref  mathscinet  zmath
    7. N Alon, K.A Berman, “Regular hypergraphs, Gordon's lemma, Steinitz' lemma and invariant theory”, Journal of Combinatorial Theory, Series A, 43:1 (1986), 91  crossref
    8. Friedrich Knop, “�ber die Glattheit von Quotientenabbildungen”, Manuscripta Math, 56:4 (1986), 419  crossref
    9. D. I. Panyushev, “Regular elements in spaces of linear representations of reductive algebraic groups”, Math. USSR-Izv., 24:2 (1985), 383–390  mathnet  crossref  mathscinet  zmath
    10. V. L. Popov, “Syzygies in the theory of invariants”, Math. USSR-Izv., 22:3 (1984), 507–585  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:548
    Russian version PDF:128
    English version PDF:28
    References:112
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025