Abstract:
It is proved that for any connected semisimple algebraic group G defined over an algebraically closed field of characteristic zero there exist (up to isomorphism) only a finite number of finite-dimensional rational G-modules containing no nonzero fixed vectors and having a free algebra of invariants. The proof is constructive and makes it possible in principle to indicate these G-modules explicitly. It is also proved that for all irreducible G-modules V, except for a finite number, the degree of the Poincaré series of the algebra of invariants (regarded as a rational function) equals −dimV.
Bibliography: 21 titles.
\Bibitem{Pop82}
\by V.~L.~Popov
\paper A~finiteness theorem for representations with a~free algebra of invariants
\jour Math. USSR-Izv.
\yr 1983
\vol 20
\issue 2
\pages 333--354
\mathnet{http://mi.mathnet.ru/eng/im1619}
\crossref{https://doi.org/10.1070/IM1983v020n02ABEH001353}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=651651}
\zmath{https://zbmath.org/?q=an:0547.20034}
Linking options:
https://www.mathnet.ru/eng/im1619
https://doi.org/10.1070/IM1983v020n02ABEH001353
https://www.mathnet.ru/eng/im/v46/i2/p347
This publication is cited in the following 10 articles:
A. BOLSINOV, A. IZOSIMOV, I. KOZLOV, “JORDAN–KRONECKER INVARIANTS OF LIE ALGEBRA REPRESENTATIONS AND DEGREES OF INVARIANT POLYNOMIALS”, Transformation Groups, 28:2 (2023), 541
M. P. Bento, “The invariant space of multi-Higgs doublet models”, J. High Energ. Phys., 2021:5 (2021)
Harm Derksen, Gregor Kemper, Encyclopaedia of Mathematical Sciences, Computational Invariant Theory, 2015, 31
Gerald W. Schwarz, Proceedings of the International Congress of Mathematicians, 1995, 333
V. L. Popov, E. B. Vinberg, Encyclopaedia of Mathematical Sciences, 55, Algebraic Geometry IV, 1994, 123
D. I. Panyushev, “Orbits of maximal dimension of solvable subgroups of reductive linear groups, and reduction for U-invariants”, Math. USSR-Sb., 60:2 (1988), 365–375
N Alon, K.A Berman, “Regular hypergraphs, Gordon's lemma, Steinitz' lemma and invariant theory”, Journal of Combinatorial Theory, Series A, 43:1 (1986), 91
Friedrich Knop, “�ber die Glattheit von Quotientenabbildungen”, Manuscripta Math, 56:4 (1986), 419
D. I. Panyushev, “Regular elements in spaces of linear representations of reductive algebraic groups”, Math. USSR-Izv., 24:2 (1985), 383–390
V. L. Popov, “Syzygies in the theory of invariants”, Math. USSR-Izv., 22:3 (1984), 507–585