Loading [MathJax]/jax/output/CommonHTML/jax.js
Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1984, Volume 22, Issue 3, Pages 507–585
DOI: https://doi.org/10.1070/IM1984v022n03ABEH001455
(Mi im1414)
 

This article is cited in 7 scientific papers (total in 7 papers)

Syzygies in the theory of invariants

V. L. Popov
References:
Abstract: A method is developed for finding all G-modules (where G is a connected and simply connected semisimple algebraic group over an algebraically closed field of characteristic zero) whose algebra of invariants has prescribed homological dimension. The main theorem says that the number of such G-modules, considered to within isomorphism and addition of a trivial direct summand, is finite. The same result is proved for finite groups G. All algebras of invariants of homological dimension 10 of a single binary form are found, as well as all algebras of invariants of a system of binary forms that are hypersurfaces. It is shown that the exceptional simple groups have no irreducible modules with an algebra of invariants of small nonzero homological dimension.
Bibliography: 46 titles.
Received: 16.11.1982
Bibliographic databases:
Document Type: Article
UDC: 519.4
MSC: Primary 15A72; Secondary 13D05
Language: English
Original paper language: Russian
Citation: V. L. Popov, “Syzygies in the theory of invariants”, Math. USSR-Izv., 22:3 (1984), 507–585
Citation in format AMSBIB
\Bibitem{Pop83}
\by V.~L.~Popov
\paper Syzygies in the theory of invariants
\jour Math. USSR-Izv.
\yr 1984
\vol 22
\issue 3
\pages 507--585
\mathnet{http://mi.mathnet.ru/eng/im1414}
\crossref{https://doi.org/10.1070/IM1984v022n03ABEH001455}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=703596}
\zmath{https://zbmath.org/?q=an:0573.14003}
Linking options:
  • https://www.mathnet.ru/eng/im1414
  • https://doi.org/10.1070/IM1984v022n03ABEH001455
  • https://www.mathnet.ru/eng/im/v47/i3/p544
  • This publication is cited in the following 7 articles:
    1. Bibikov P.V., Lychagin V.V., “Klassifikatsiya lineinykh deistvii algebraicheskikh grupp na prostranstvakh odnorodnykh form”, Doklady akademii nauk, 442:6 (2012), 732–732  elib
    2. Philippe Pouliot, J Phys A Math Gen, 34:41 (2001), 8631  crossref  mathscinet  zmath  adsnasa
    3. Shmel'kin D.A., “On representations of SLn with algebras of invariants being complete intersections”, Journal of Lie Theory, 11:1 (2001), 207–229  isi
    4. Shmel'kin D.A., “On algebras of invariants and codimension 1 Luna strata for nonconnected groups”, Geometriae Dedicata, 72:2 (1998), 189–215  crossref  isi
    5. Roger Howe, Hanspeter Kraft, Progress in Mathematics, 158, Geometry and Representation Theory of Real and p-adic groups, 1998, 147  crossref
    6. V. L. Popov, E. B. Vinberg, Encyclopaedia of Mathematical Sciences, 55, Algebraic Geometry IV, 1994, 123  crossref
    7. Akihiko Gyoja, “Invariants, nilpotent orbits, and prehomogeneous vector spaces”, Journal of Algebra, 142:1 (1991), 210  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:662
    Russian version PDF:262
    English version PDF:29
    References:101
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025