Abstract:
Let Φ+ be the set of nondecreasing functions φ defined on (0,∞) which admit a representation φ(u)=ψ(lnu), where the function ψ is convex (below) on (−∞,∞). To the class Φ+ belong, for example, the functions lnu, ln+u, up when p>0, and also any function φ which is convex on (0,∞). In this paper it is shown, in particular, that if φ∈Φ+, then for any trigonometric polynomial Tn of order n the following inequality holds for all natural numbers r:
∫2π0φ(|T(r)n(t)|)dt⩽∫2π0φ(nr|Tn(t)|)dt.
This inequality may be considered a generalization of the inequalities of S. N. Bernstein and A. Zygmund.
Bibliography: 16 titles.
\Bibitem{Are81}
\by V.~V.~Arestov
\paper On~integral inequalities for trigonometric polynomials and their derivatives
\jour Math. USSR-Izv.
\yr 1982
\vol 18
\issue 1
\pages 1--17
\mathnet{http://mi.mathnet.ru/eng/im1545}
\crossref{https://doi.org/10.1070/IM1982v018n01ABEH001375}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=607574}
\zmath{https://zbmath.org/?q=an:0538.42001|0517.42001}
Linking options:
https://www.mathnet.ru/eng/im1545
https://doi.org/10.1070/IM1982v018n01ABEH001375
https://www.mathnet.ru/eng/im/v45/i1/p3
This publication is cited in the following 65 articles:
F. A. Bhat, “Refinement of Erdös-Lax inequality for N-operator”, Probl. anal. Issues Anal., 14:1 (2025), 42–60
A. O. Leont'eva, “Bernstein Inequality for the Riesz Derivative of Order 0<α<1 of Entire Functions of Exponential Type in the Uniform Norm”, Math. Notes, 115:2 (2024), 205–214
V. P. Zastavnyi, “On extremal functions in inequalities for entire functions”, Math. Notes, 116:1 (2024), 58–65
N. A. Rather, N. Wani, A. Bhat, “Integral mean estimate for polynomials with restricted zeros”, Probl. anal. Issues Anal., 13(31):3 (2024), 101–117
M. Shafi, N. A. Ratkher, S. Gulzar, “O neravenstve Vissera”, Izv. vuzov. Matem., 2024, no. 11, 51–60
Ahmad Motamednezhad, Fatemeh Mohammadi, “On the polar derivative of lacunary type polynomials”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 73:4 (2024), 1197
M. Shafi, N. A. Rather, S. Gulzar, “A Note on Visser's Inequality”, Russ Math., 68:11 (2024), 44
A. O. Leont'eva, “Bernstein-Szegő inequality for the Riesz derivative of trigonometric polynomials in Lp-spaces, 0⩽p⩽∞, with classical value of the sharp constant”, Sb. Math., 214:3 (2023), 411–428
V. P. Zastavnyi, “Ob ekstremalnykh trigonometricheskikh polinomakh”, Tr. IMM UrO RAN, 29, no. 4, 2023, 70–91
A. O. Leont'eva, “On Constants in the Bernstein–Szegő Inequality for the Weyl Derivative of Order Less Than Unity of Trigonometric Polynomials and Entire Functions of Exponential Type in the Uniform Norm”, Proc. Steklov Inst. Math. (Suppl.), 323, suppl. 1 (2023), S146–S154
A. O. Leont'eva, “Bernstein inequality for Riesz derivative of fractional order less than 1 of entire function of exponential type”, Dokl. Math., 108:3 (2023), 524–527
Mudassir A. Bhat, Ravinder Kumar, Suhail Gulzar, “On Arestov's inequalities concerning the Shur–Szegő composition of polynomials”, Period Math Hung, 2023
S. Gulzar, N. A. Rather, M. Sh. Wani, “On Visser's inequality concerning coefficient estimates for a polynomial”, Russian Math. (Iz. VUZ), 66:3 (2022), 9–15
A. O. Leonteva, “Neravenstvo Bernshteina - Sege dlya trigonometricheskikh polinomov v prostranstve L0 s konstantoi bolshei, chem klassicheskaya”, Tr. IMM UrO RAN, 28, no. 4, 2022, 128–136
Vitalii V. Arestov, Marina V. Deikalova, “On one inequality of different metrics for trigonometric polynomials”, Ural Math. J., 8:2 (2022), 27–45
N. A. Rather, A. Bhat, M. Shafi, “Integral inequalities for the growth and higher derivative of polynomials”, Proceedings of NAS RA. Mathematics, 2022, 64
N. A. Rather, A. Bhat, M. Shafi, “Integral Inequalities for the Growth and Higher Derivative of Polynomials”, J. Contemp. Mathemat. Anal., 57:4 (2022), 242