Loading [MathJax]/jax/output/CommonHTML/jax.js
Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1982, Volume 18, Issue 1, Pages 1–17
DOI: https://doi.org/10.1070/IM1982v018n01ABEH001375
(Mi im1545)
 

This article is cited in 65 scientific papers (total in 65 papers)

On integral inequalities for trigonometric polynomials and their derivatives

V. V. Arestov
References:
Abstract: Let Φ+ be the set of nondecreasing functions φ defined on (0,) which admit a representation φ(u)=ψ(lnu), where the function ψ is convex (below) on (,). To the class Φ+ belong, for example, the functions lnu, ln+u, up when p>0, and also any function φ which is convex on (0,). In this paper it is shown, in particular, that if φΦ+, then for any trigonometric polynomial Tn of order n the following inequality holds for all natural numbers r:
2π0φ(|T(r)n(t)|)dt2π0φ(nr|Tn(t)|)dt.
This inequality may be considered a generalization of the inequalities of S. N. Bernstein and A. Zygmund.
Bibliography: 16 titles.
Received: 24.09.1978
Bibliographic databases:
UDC: 517.518
MSC: 42A05
Language: English
Original paper language: Russian
Citation: V. V. Arestov, “On integral inequalities for trigonometric polynomials and their derivatives”, Math. USSR-Izv., 18:1 (1982), 1–17
Citation in format AMSBIB
\Bibitem{Are81}
\by V.~V.~Arestov
\paper On~integral inequalities for trigonometric polynomials and their derivatives
\jour Math. USSR-Izv.
\yr 1982
\vol 18
\issue 1
\pages 1--17
\mathnet{http://mi.mathnet.ru/eng/im1545}
\crossref{https://doi.org/10.1070/IM1982v018n01ABEH001375}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=607574}
\zmath{https://zbmath.org/?q=an:0538.42001|0517.42001}
Linking options:
  • https://www.mathnet.ru/eng/im1545
  • https://doi.org/10.1070/IM1982v018n01ABEH001375
  • https://www.mathnet.ru/eng/im/v45/i1/p3
  • This publication is cited in the following 65 articles:
    1. F. A. Bhat, “Refinement of Erdös-Lax inequality for N-operator”, Probl. anal. Issues Anal., 14:1 (2025), 42–60  mathnet  crossref
    2. A. O. Leont'eva, “Bernstein Inequality for the Riesz Derivative of Order 0<α<1 of Entire Functions of Exponential Type in the Uniform Norm”, Math. Notes, 115:2 (2024), 205–214  mathnet  crossref  crossref  mathscinet
    3. V. P. Zastavnyi, “On extremal functions in inequalities for entire functions”, Math. Notes, 116:1 (2024), 58–65  mathnet  crossref  crossref
    4. N. A. Rather, N. Wani, A. Bhat, “Integral mean estimate for polynomials with restricted zeros”, Probl. anal. Issues Anal., 13(31):3 (2024), 101–117  mathnet  crossref
    5. M. Shafi, N. A. Ratkher, S. Gulzar, “O neravenstve Vissera”, Izv. vuzov. Matem., 2024, no. 11, 51–60  mathnet  crossref
    6. Ahmad Motamednezhad, Fatemeh Mohammadi, “On the polar derivative of lacunary type polynomials”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 73:4 (2024), 1197  crossref
    7. M. Shafi, N. A. Rather, S. Gulzar, “A Note on Visser's Inequality”, Russ Math., 68:11 (2024), 44  crossref
    8. A. O. Leont'eva, “Bernstein-Szegő inequality for the Riesz derivative of trigonometric polynomials in Lp-spaces, 0p, with classical value of the sharp constant”, Sb. Math., 214:3 (2023), 411–428  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    9. V. P. Zastavnyi, “Ob ekstremalnykh trigonometricheskikh polinomakh”, Tr. IMM UrO RAN, 29, no. 4, 2023, 70–91  mathnet  crossref  elib
    10. A. O. Leont'eva, “On Constants in the Bernstein–Szegő Inequality for the Weyl Derivative of Order Less Than Unity of Trigonometric Polynomials and Entire Functions of Exponential Type in the Uniform Norm”, Proc. Steklov Inst. Math. (Suppl.), 323, suppl. 1 (2023), S146–S154  mathnet  crossref  crossref  elib
    11. A. O. Leont'eva, “Bernstein inequality for Riesz derivative of fractional order less than 1 of entire function of exponential type”, Dokl. Math., 108:3 (2023), 524–527  mathnet  crossref  crossref  elib
    12. Mudassir A. Bhat, Ravinder Kumar, Suhail Gulzar, “On Arestov's inequalities concerning the Shur–Szegő composition of polynomials”, Period Math Hung, 2023  crossref
    13. S. Gulzar, N. A. Rather, M. Sh. Wani, “On Visser's inequality concerning coefficient estimates for a polynomial”, Russian Math. (Iz. VUZ), 66:3 (2022), 9–15  mathnet  crossref  crossref
    14. A. O. Leonteva, “Neravenstvo Bernshteina - Sege dlya trigonometricheskikh polinomov v prostranstve L0 s konstantoi bolshei, chem klassicheskaya”, Tr. IMM UrO RAN, 28, no. 4, 2022, 128–136  mathnet  crossref  elib
    15. Vitalii V. Arestov, Marina V. Deikalova, “On one inequality of different metrics for trigonometric polynomials”, Ural Math. J., 8:2 (2022), 27–45  mathnet  crossref  mathscinet
    16. N. A. Rather, A. Bhat, M. Shafi, “Integral inequalities for the growth and higher derivative of polynomials”, Proceedings of NAS RA. Mathematics, 2022, 64  crossref
    17. N. A. Rather, A. Bhat, M. Shafi, “Integral Inequalities for the Growth and Higher Derivative of Polynomials”, J. Contemp. Mathemat. Anal., 57:4 (2022), 242  crossref
    18. Nisar Ahmad Rather, Suhail Gulzar, Aijaz Bhat, “On Zygmund-type inequalities concerning polar derivative of polynomials”, Ural Math. J., 7:1 (2021), 87–95  mathnet  crossref  mathscinet  zmath
    19. D. V. Gorbachev, “Tochnye neravenstva Bernshteina — Nikolskogo dlya polinomov i tselykh funktsii eksponentsialnogo tipa”, Chebyshevskii sb., 22:5 (2021), 58–110  mathnet  crossref
    20. Xingjun Zhao, “Some inequalities for sth derivative of polynomials”, J Anal, 2021  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:1304
    Russian version PDF:402
    English version PDF:94
    References:116
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025